
 Advanced search

Linux Journal Issue #68/December 1999

Focus

System Administration by Marjorie Richardson

Features

Workings of a Virtual Private Network, Part 1 by David Morgan
A look into VPNs—what they are and how they work.

Corporate Linux: Coexisting with the Big Boys by Markolf Gudjons
Integrating Linux into a large scale production network running
SPARCs and Windows.

Post-Installation Security Procedures by Eddie Harari
This article discusses a few of the many procedures we must
take after the install is done, so that the system will not be
trivial to hack.

Securing Name Servers on UNIX by Nalneesh Gaur
Because the DNS plays such a vital role in the Internet, it is
important that this service be protected and secured.

1999 Editors' Choice Awards by Jason Kroll, Marjorie Richardson, Doc
Searls and Peter Salus

Once again, it is time to present our annual awards to those we
feel deserve recognition for their contributions to forwarding the
Linux cause in the real world.

Forum

X-ISP by Ibrahim Haddad
The purpose of this article is to introduce the readers to X-ISP.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/068/3719.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3271.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3528.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3554.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3691.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3730.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3122.html

MultiFax by Marcel Gagné
Psst! Want to create a Windows broadcast fax system with web-
based administration using Linux? Come over here and we'll
talk.

Hell's Kitchen Systems, Inc. by Craig Knudsen
Hell's Kitchen Systems, Inc. (HKS) started in 1994 in the Hell's
Kitchen neighborhood of Manhattan and moved to Pittsburgh in
1997. Their flagship product is CCVS, a commercial credit card
processing system.

Guido van Rossum by Phil Hughes
Phil and Guido stroll through the waterfront at Monterey and
discuss Python.

Free Clues from Eric by Doc Searls
Doc talks to Eric Raymond about what he has been up to lately.

Reviews

Diffpack by Jim Moore
Castlewood Orb by Patrick Lambert
MailStudio 2000 by Jason Kroll
Developing Linux Applications with GTK+ and GDK by Michael
Hammel

Columns

Take Command : lpd: Getting the Hard Copy by Michael Hughes
How to set up local and networked printing services in Linux.

Kernel Korner Implementing Linux System Calls by Jorge
Manjarrez-Sanchez

How to create and install a system call in Linux and install
interrupts for controlling the serial port.

At the Forge A Web-Based Clipping Service by Reuven M. Lerner
The Cutting Edge Effectively Utilizing 3DNow! in Linux by
Jonathan Bush and Timothy S. Newman

A description of the 3DNow! technology and its impact on
machine performance.

Focus on Software Focus on Software by David A. Bandel

Departments

Letters
More Letters

upFRONT
Penguin's Progress: Millennial Musings—Y2K by Peter Salus
Linux for Suits A Tale of Two Markets by Doc Searls
Best of Technical Support
New Products

Strictly On-Line

Army National Guard Using Linux by Richard Ridgeway

https://secure2.linuxjournal.com/ljarchive/LJ/068/3274.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3639.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3709.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3729.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3636.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3644.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3702.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3626.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3245.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3326.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3714.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3685.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3715.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3718.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/lte68more.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3716.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3717.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3720.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3721.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/2942.html

The Army migrates a war game tool from Hewlett Packard 700
series workstations using HP-UX to Intel-based Linux
workstations.

Transparent Firewalling by Federico and Christian Pellegrin
This article describes how to split an existing network without
affecting the configuration of the machines already present by
using the proxy arp technique.

Customizing the XDM Login Screen by Brian Lane
How would you like your screen to look on start up? Here's how
to make it look your way.

Kerberos by Cosimo Leipold
Mr. Leipold explains what Kerberos is and why you want to use
it.

What Can You Expect?--A Data Collection Project Using Linux by
Denny Fox

The author describes the end-to-end process of defining and
implementing a data collection project using Linux. The project
illustrates the use of Expect, stty, cron, a little C programming,
gnuplot and ioctl to the serial device.

The Use of Linux in an Embedded System by Dave Pfaltzgraff
One company's solution to a customer problem using Linux and
open-source software.

Building a Firewall with IP Chains by Pedro Bueno
A quick introduction to the program ipchains.

Porting Progress Applications to Linux by Thomas Barringer
An explanation of the work required to take an existing Progress
application and deploy it on Linux, and the advantages and
disadvantages of doing so.

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3246.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3325.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3329.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3555.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3622.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3671.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Focus: System Administration

Marjorie Richardson

Issue #68, December 1999

The most important person in any company is most likely the system
administrator.

With the increasing dependency on computers by most companies today, the
most important person in any company is most likely the system administrator.
I know we depend heavily on ours. The hard disk on our server crashed the day
we were to start layout last month. Dan Wilder, our sys admin, worked his
magic to get us up and running in less than half a day. Without him on site,
downtime could conceivably have stretched long enough that we would have
missed our print deadlines. His solution was a temporary one but it got us past
the critical time, and he has since replaced the disk completely.

Home users are their own system administrators and get to know the fun of
logging on as root to give themselves more power. Along with power comes
responsibility, and keeping the system secure for users—even if only yourself—
is a high priority. We have an article this month for the new user about how to
make your system secure after installation, as well as one for the more
advanced user on keeping the domain name system secure.

We also have an article for company system administrators dealing with
integrating Linux in a large-scale network with other systems. Last but not least,
we start a two-part series on Virtual Private Networking, a cool way to protect
your network. And, of course, don't forget the Strictly On-Line articles (see
upFRONT) which include four system administration topics: transparent
firewalls, building a firewall with IP chains, Kerberos and Expect.

Awards

We will be attending Comdex about the time this issue is printed in order to
give out the Editors' Choice awards and choose the Penguin Playoffs award
winners for the Linux Business Expo. Linus Torvalds will be there too, and will

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

present the Penguin Playoffs awards at the same ceremony. Editors' Choice
awards are announced in this issue. Penguin Playoffs and Readers' Choice
winners will be announced in the January issue.

—Marjorie Richardson

1999 Editors' Choice Awards

Every year the choices get harder to make with so many exciting new products
coming to the Linux world. Already it is getting hard for critics to say “Linux has
no applications.” Difficult as it was, we made our decisions and here they are.by

Jason Kroll, Marjorie Richardson, Peter Salus and Doc Searls

Workings of a Virtual Private Network, Part 1

In this two-part series, Mr. Morgan tells system administrators all about VPNs:
describing the technology and discussing the building blocks used in
constructing one on a Linux system. VPNs allow you to connect remote
networks to the local network, ensuring privacy to both, even through a public
link.by David Morgan

Post-Installation Security Procedures

When you have finished setting up your system and connecting to the Internet,
the next priority is securing your system from outsiders who might want to
break in for fun or nefarious purposes. Mr. Harari gives us some
straightforward advice on the best ways to secure your system.by Eddie Harari

Security Name Servers on UNIX

Security is an important issue for every system, and securing the domain name
system is imperative, due to its connection to the Internet. Learn about the
vulnerabilities in BIND and how to protect your system from cache poisoning,
inverse-query buffer overruns and denial of service. Establish control of your
system today.by Nalneesh Gaur

Corporate Linux: Coexisting with the Big Boys

Linux has the power to coexist with other systems, UNIX or not. If you are
looking to integrate Linux into a large-scale production network, here's how to
do it. Mr. Gudjons discusses NIS, NFS and unified login scripts, all necessary to a
successful integration.by Markolf Gudjons

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Workings of a Virtual Private Network, Part 1

David Morgan

Issue #68, December 1999

A look into VPNs—what they are and how they work.

Commercial Virtual Private Network (VPN) products are becoming widespread.
They let confidential data safely take the “free ride” offered by the Internet,
compensating for the Net's intrinsic lack of security. A Linux VPN can be
constructed several ways. One is outlined in the clever but spare VPN mini-
HOWTO by Arpad Magosanyi. I implemented it for a business and present
some of the insights gained.

Part 1 of this article is theoretical and explanatory, Part 2 practical. I first define
VPNs and describe technologies they employ. I discuss the combination of
Linux building blocks used by the HOWTO for constructing one. In Part 2, I
show log and screen output depicting the results of actually running the script
that constructs the VPN.

Virtual Private Networks

A VPN uses a public transport—the Internet—for private communications. It
applies encryption to preserve privacy. Traditionally, companies have used
private transport to do that—dedicated phone lines. The two ways of keeping
an electronic conversation private are to make the line private and the data
private. Dedicated lines are private because the line is private, i.e., inaccessible
to others. VPNs are private because the data is private, i.e., rendered
unintelligible by encryption—different means, same result.

VPNs are most commonly used to connect two networks at different sites of
the same company. The technique in effect plugs the remote computers into
the local network, consolidating the two physical nets into a single logical one.
Remote computers have access to the same local resources as local ones. At
the same time, remote machines enjoy the same degree of privacy as local
ones. All this is location-transparent in terms of operation (though not

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

performance) as if they were attached to the local network. This combination of
full participation plus full privacy between networks, while using a link that isn't
private, is the hallmark of a VPN. The compelling appeal of the VPN is that it's
cheap. Dedicated lines are expensive, so displacing them with a free transport
is economic.

The Network—PPPD and ROUTE

The VPN in the HOWTO is fashioned from two main ingredients: the secure
shell (ssh/sshd) and the point-to-point protocol (pppd). One machine (the “local”
one in my terminology, “master” in Mr. Magosanyi's) runs the HOWTO's script
to call another (my “remote”, his “slave”). I'll call these VPN servers. The idea is
that they belong to the two networks to be joined and serve as the contact
points or data conduits between them, on behalf of any remotely situated pair
of workstations that want to converse.

Table 1. VPN Layout

The diagram in Table 1 depicts the layout and addresses in section 4.1 of the
VPN HOWTO. For the public Internet addresses (fellini-out, polanski-out), I have
substituted those actually in force when I generated the screen captures and
log snippets shown later in this article for agreement.

To construct the VPN, the script on the local VPN server must execute four main
commands, two of them on the remote VPN server:

• pppd remotely, triggered somehow on the other VPN server
• pppd locally, on the VPN server where the script runs
• route locally
• route remotely

https://secure2.linuxjournal.com/ljarchive/LJ/068/3271t1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3271t1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3271t1.large.jpg

The pppd commands establish a working connection. It's strictly a bilateral
umbilical cord between the VPN servers that extends no mutual connectivity to
workstations on the networks. That is done by the route commands. Once
these commands have been executed, the two networks have been
transparently pooled into a single group of machines, all mutually visible via
Internet addresses.

The Private—SSH

Privacy comes through the tool used by the first computer to trigger commands
on the second, because that tool also does authentication and encryption. It's
called the secure shell program, which is a remote command executor and an
encryptor. Actually, it's a pair of programs, ssh and sshd, deliberately crafted to
work together on the client-server model. Other familiar programs that use the
model are ftp/ftpd, telnet/telnetd and any browser/httpd.

The “d” in sshd, ftpd and httpd stands for daemon, a synonym for server. Server
programs are like genies that grant categories of wishes to their client/
petitioners. So, ftpd grants file wishes to the ftp client and the httpd grants
web-page wishes to a browser client. Likewise, sshd grants remote-command
wishes to the ssh client. Additionally, ssh and sshd are written to encrypt and
decrypt all traffic as it passes between them.

As a command executor, ssh can process a single command and exit.
Alternatively, it can set up an open-ended login session where the user submits
commands ad hoc. In both cases, ssh delivers back to the local machine the
standard output from commands it tells sshd to run in the remote machine.
The user sits physically at the local machine, logically logged in and functioning
as one of the remote machine's users. All command or session output is
delivered from the remote machine to his local monitor. This is much like
telnet. Unlike telnet, everything gets encrypted and decrypted on the fly during
the session.

The first sentence of the ssh man page highlights these roles:

ssh (Secure Shell) is a program for logging into a
remote machine and for executing commands in a
remote machine. It is intended to replace rlogin and
rsh, and provide secure encrypted communications
between two untrusted hosts over an insecure
channel.

The syntax for setting up a remote login session is

ssh -l

The syntax for executing a single remote command is
ssh -l

-l stands for “login” and specifies the user name for the remote computer login.
The first command form gets you logged into the other machine as remote-
user, with his login prompt on your screen. The second also logs you in and
launches command on the remote machine all at one stroke. When the
command terminates in the latter case, so does your connection. If command is
ls /home, the listing of the other machine's /home subdirectory will be
delivered to your screen. Here's an actual screen capture of it:

ssh -l slave 206.170.217.204 ls /home
david
ftp
httpd
panderson
samba
slave

The login prompt is that of the local machine, where the user is seated. The
output comes from the remote machine, where ls was run (as a user on that
machine called slave), but appears here on the local monitor. It shows the
contents found in the remote directory /home.

Notice execution was unimpeded by password challenge. This is surprising for
a program that's supposed to provide security. However, ssh did authenticate
in an alternative, transparent way; its technique uses public-key cryptography
and is called RSA authentication. I'll show you the evidence from the remote
machine's log file, then explain how the keys work.

Concurrent with the above local activity, these entries appeared in the remote
machine's log file (/var/log/messages):

Nov 7 20:15:54 localhost sshd[1400]: log: Connection from 206.170.218.30 port 1023
Nov 7 20:15:57 localhost sshd[1400]: log: RSA authentication for slave accepted.
Nov 7 20:15:57 localhost sshd[1402]: log: executing remote command as user slave
Nov 7 20:15:58 localhost sshd[1400]: log: Closing connection to 206.170.218.30
Nov 7 20:15:58 localhost PAM_pwdb[1400]: (ssh) session closed for user slave

Note that these entries were authored by sshd, the server half of the secure
shell tandem of programs. That's reasonable, since the calling program on the
local machine was the client half, ssh. By design, ssh calls and asks for the sshd
process, hooking up to it by TCP port number where sshd runs, 22 by default
but configurable. sshd then swings into action and they proceed to do their
thing: authenticate and encrypt. We just saw secondary evidence of the
authentication, although so far we've seen no evidence of the encryption. Both
rely on the use of keys, in particular the matched pairs of keys that characterize
public-key cryptography. Let me describe the essential theory and how you
configure ssh with keys, before explaining how authentication results from
their use.

First, here's a good nutshell summary from the README.SSH file:

When started, ssh connects sshd on the server
machine, verifies that the server machine really is the
machine it wanted to connect, exchanges encryption
keys (in a manner which prevents an outside listener
from getting the keys), performs authentication
using...RSA authentication.... The server then
(normally) allocates a pseudo-terminal and starts an
interactive shell or user program.

Note that using ssh's -v option allows you to watch these activities.

Public/Two-Key Cryptography

Public-key cryptography is the historical successor to secret-key cryptography. I
call them two-key and single-key cryptography. Early ciphers used the very
same key to decrypt as to encrypt. When sending a recipient your scrambled
message, you must somehow also supply him your key to enable unscrambling.

The Achilles heel is that you may not supply the key using the same
communications channel you are trying to secure. By presupposition, it needs
securing—information on it is available to others. Others' inability to penetrate
the scrambled messages you plan to send relies on keeping your key secret
from them. But if you send it over that channel to your intended recipient, you
are in effect sending it to others too, defeating your purpose. The term “secret-
key” for this type of cipher reflects its requirement for keeping the key secret so
it can work.

With public-key cryptography, there are two keys: a scrambler and a
mathematically corresponding unscrambler. A person never gives out the
unscrambler. Instead, he distributes the scrambler. Unlike a secret key, it
doesn't unscramble anything. It doesn't possess the ability or value of
unscrambling power. Therefore—drum roll—it's okay if it gets publicly
intercepted.

Also, the parties—sender/encryptor and recipient/decryptor—reverse roles.
The recipient-to-be, not the sender, generates the keys. And he, not the sender,
distributes the necessary (scrambler) key to the other person. Security comes
from the fact that the “power” key—the unscrambler—reposes from the start
with the recipient where it's needed and never needs to travel. Transmission
risk is thereby eliminated. Achilles heel solved.

SSH Authentication

Now let's see how ssh uses public-key cryptography for RSA authentication, and
how it handles encryption. It has a utility, ssh-keygen, that generates matched

key pairs and writes them into disk files. Typically, each user who wishes to use
ssh/sshd will generate his own key pair, whether actively by running commands
on other computers or passively by having users from other computers log in
with his user name to run commands. ssh-keygen writes the two key-files into
the logged-in user's home directory. The file identity.pub contains the public
key suitable for distribution to others and is pure ASCII. The file identity
contains the private key to be kept secret. A user runs ssh-keygen only once.
Table 2 is the layout of these and some other important ssh files (not all
discussed here).

Table 2

User authentication works as an interplay between users' key files. (ssh also
offers host authentication, involving /etc/ssh/ssh_host_key, not discussed here.)
I'm talking about the two users who are always party to an ssh connection.
First, when you run ssh from the local machine, you are already logged into it
as somebody. Second, with the -l option in your ssh command, you specify
some target user on the remote machine as the operator there. I'll call these
local-user and remote-user. Another key-related file in each ssh user's home
directory is authorized_keys. To succeed, RSA authentication must find a copy
of local-user's public key embedded in remote-user's authorized_keys file. This
will never happen except deliberately. If I, as the local-user, want to be able to
log into your machine as you, I send you my public key. I could send you a copy
of my identity.pub as a file, or embed its contents in an e-mail message (since
it's pure ASCII and security of key transmittal is unimportant). You, the remote-
user, will then place my public key into your authorized_keys file with an editor.
Authorization will now succeed when I use ssh to log into your machine as you.
Conversely, if I want to let you log into my machine as me, you'll send me your
public key and I'll drop it into my authorized_keys file.

Authentication by sshd on the remote machine uses the local-user's public key
to encrypt something and ship it back to local machine. Local machine must
then prove itself by decrypting and sending back to the remote machine data
matching the original. At that point, authentication is complete. sshd writes
“RSA authentication for remote-user accepted” into the remote log (as above),
and lets the session or command proceed. For implementation purposes, you
simply need to follow the key prepositioning rules when configuring the
computers to interact through ssh.

As we noticed earlier, this method doesn't involve any password. It cares only
whether the “petitioning” user can convincingly come up with the expected
public key and then demonstrate his possession of the matching private one.
While it's counterintuitive, I routinely log into remote machines without a
password—as root!

https://secure2.linuxjournal.com/ljarchive/LJ/068/3271t2.html

ssh offers other authentication methods, password checking among them (ssh
is extensive, with many more options in its configuration files). These methods
can be used instead of or in combination with RSA authentication. For purposes
of a VPN, given that RSA authentication satisfies the test of adequate security
for most, using it alone is preferred because of its transparency.

ssh Encryption

Once authenticated, the local user can freely operate as the specified user on
the remote machine. There, on his behalf, sshd runs the requested command
or shell and sends any standard output back to the local machine, but not
before first encrypting it. Direct conversation between the machines is all
between ssh and sshd. So, ssh is there on the receiving end, knowing what to
do with the incoming data stream (decrypt it) and how (using the agreed key).
The same thing happens with reverse traffic, ssh encrypting and sshd
decrypting.

You might think the encryption key used on each machine for outbound data
would be the public key of the other machine's user. However, for performance
reasons, ssh and sshd settle instead on a different, secret-key during their
initial negotiation phase, and both use that same key for encrypting the
session. While ssh-keygen's public/private keys play the central role in
authentication, their role in encryption is solely to impenetrably encrypt the
initial exchange of this secret key, overcoming the key exchange weakness in
secret key cryptography. For ongoing message encryption, however, the public/
private keys are not used. Secret-key algorithms are faster than public/private-
key algorithms. The securely exchanged secret key, called the “session key”, is
used to encrypt the rest of the session.

The important point is that once the session gets underway, ssh and sshd
operate as transparent intermediary processes such that the entire session
gets encrypted. Nothing moves between the machines unscrambled, so
meaningful interception is impossible.

Blending the Ingredients

Now we can put together our VPN. The trick is to strategically submit a certain
command for ssh to launch remotely. That command is pppd, the point-to-
point protocol daemon.

We know that during a session, ssh and sshd encrypt the entire dataflow of
whatever command(s) they launch as it passes between them. The duration of
a session is as long as the command takes to execute. So, for commands that
run straightaway to termination like ls /home, the session is transient because

the command is transient. Not all commands are this expeditious, for example,
an editor or pppd.

ssh -l

This command stays up all day—you have to kill it to stop it.

Critical for achieving VPN functionality, pppd is itself a traffic carrier for other
programs. This implies that everything passing between two computers via a
pppd interface launched under ssh control automatically goes through the
encryption mill.

The Virtual

Combined with routing, this bilateral umbilical link broadens into a general-
purpose bridge that can carry conversations between any pair of workstations
on opposite sides. Routing lets each workstation on one LAN see those on the
opposite LAN by IP address—one big happy family. At the same time, ssh
denies that visibility to the outside world. This is precisely the effect of having
all the workstations local. With this setup, you have the equivalent of a single
LAN, but because that's not truly what you have, your consolidated network is
“virtual”.

What can workstations on opposite LANs do here? Whatever a pair of
workstations on the same LAN can—more generally, whatever any machines
mutually addressable by IP addresses can. In my experience, examples of
actual operations between remote machine pairs on a Linux VPN include:

• Microsoft computers conducting MS peer-to-peer resource sharing.
• A Linux machine serving resources to MS machines by running Samba.
• An MS machine running a terminal emulator on an IBM AIX UNIX machine.
• A Linux or MS machine using TELNET to log into another Linux or UNIX

machine.

Interacting machines don't know their conversation is being encrypted for
much of its journey. They just launch packets at one another by IP address and
let their routing tables figure it out. Upon reaching their VPN server, the routing
table there points these packets across the ppp interface operated by ssh.
That's where the security comes in; otherwise, it's nothing more than routing as
usual.

That's it for the theory. It's virtual. It's private. It's a network. So, I trust you'd
agree, it's a virtual private network. Part 2 will cover practical operation of the
VPN HOWTO script in detail.

Resources

David Morgan is an independent consultant in Los Angeles and a Computer
Science instructor at Santa Monica College. He got serious about Linux in 1998.
While waiting for it to enter his life, he earned degrees in physics and business,
served in the U.S. Peace Corps as a teacher, held technical and product
management positions at Rexon Business Machines, Nantucket Corporation,
Computer Associates, and Symantec Corporation. He bicycles, backpacks and
cooks. Send him your recipes and VPN experiences. He can be reached at
dmorgan1@pacbell.net and currently maintains websites at http://
www.geocities.com/Yosemite/Gorge/3645/ and http://
skydesign.hypermart.net/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3271s1.html
http://www.geocities.com/Yosemite/Gorge/3645
http://www.geocities.com/Yosemite/Gorge/3645
http://skydesign.hypermart.net
http://skydesign.hypermart.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Corporate Linux: Coexisting with the Big Boys

Markolf Gudjons

Issue #68, December 1999

Integrating Linux into a large-scale production network running SPARCs and
Windows.

Linux has come a long way in these past few years, no longer a geek toy and
well on its way to being a mainstream operating system. Linus Torvalds, with
tongue firmly planted in cheek, is striving for world domination; however, one
of the more intriguing strengths of Linux is its friendly and fruitful coexistence
with other systems, UNIX or not. In fact, its standards-based approach is one of
my favorite ways of distinguishing between it and certain commercial products.

This being said, I would like to present some experiences with integrating Linux
machines into a production computer network of over 1000 nodes, divided into
about two-thirds SPARCs running Sun Solaris and one-third PCs running one of
the variety of software packages emanating from Redmond, WA.

Any large UNIX site usually employs the operating system's easy yet effective
mechanisms for maintaining a large number of users working on an equally
large number of machines. For Linux to participate in such a network, it needs
to be able to participate in or even provide any of these services. At our site,
these are:

• NIS: Sun's Network Information Services, formerly called Yellow Pages.
This is a well-proven mechanism to distribute any kind of information that
can be represented as lists, such as user accounts, passwords and printer
definitions.

• NFS: the Network File System. This allows mounting of remote file
systems, typically with a mix of static and automatic mounts. The former
are configured on a per-machine basis and the latter are distributed via
NIS maps.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Unified login scripts: a carefully set up and maintained web of shell
scripts, providing users with the required settings to work with their
respective applications. This eliminates the need for each user to hack
together her own environment with all the support implications.

Additionally, it is almost self-evident that a Linux box should be able to access
networked or server-based printers via the LPR protocol as well as utilize all
other communication protocols like HTTP, NNTP, SMTP or FTP. Linux has a well-
deserved reputation for being an excellent performer in this respect.

The Information Source: Enabling NIS

A three-step approach lets a Linux machine participate in an NIS domain,
beginning with the installation of the necessary software. In the case of the Red
Hat 5.x distributions, these come in two RPM packages—ypbind and yptools.
The former provides the ypbind executable, which must run on any NIS client
as a daemon, and provides communication with the NIS server. The latter
contains various NIS-related tools for querying NIS tables (ypcat, ypmatch,
yppoll) and maintaining the client configuration (ypwhich, ypset).

Next, the server-side configuration is modified to let the new NIS client
participate in the domain. NIS has only basic security mechanisms, with a
common one being the “securenets” list enumerating the networks considered
secure to participate in a domain. If your Linux box lives in a different subnet
than your other UNIX boxes, make sure that network is present in your server's
securenets list (commonly located in /var/yp/securenets on a Sun server).

The final hurdle is the client-side configuration. First of all, the ypbind daemon
needs to know the NIS domain name (another security precaution, although a
rather fragile one). This is set in the file /etc/yp.conf, together with either an NIS
server name or the instruction to broadcast for a server. The file needs to
contain only a single line in this format:

domain

The server bigboy.my.net must have an entry in the hosts database, /etc/hosts.

Now the NIS domain name needs to be set. This can be accomplished via the
domainname my.NIS.domain command. To make this setting persist even
after a reboot, the domain name should also be entered into the system's
network configuration, in the case of Red Hat: /etc/sysconfig/network:

DOMAINNAME=

After creating a directory /var/yp/binding for ypbind to store binding
information in, ypbind can be started via its script: /etc/rc.d/init.d/ypbind start.

Next, we have to let the system know to actually use NIS to resolve things like
hostnames, user IDs and passwords. To do this, edit the file /etc/nsswitch.conf
and change the corresponding lines for each service with which you would like
to use NIS, e.g.:

passwd: files nis
shadow: files nis
group: files nis
hosts: nis files dns
automount: files nis

In the above examples, the login program trying to authenticate a user will
consult /etc/nsswitch.conf, see the sequence files nis and look for the
information in the respective files. Upon failure, it will query the NIS service for
the user's password and shadow entries. If this also fails, the login is denied.
The reason to have the entry listed as files nis is that the root user is normally
not defined in NIS (this is considered a security hole). In the case of a network
problem, looking in the local passwd/shadow files first lets root log in without
further problems.

This is basically it. Once the file is edited and ypbind is running correctly (verify
this by looking for suspicious messages in /var/log/messages and in the
corresponding file on the NIS server), your machine is part of the NIS domain.
Of course, you can reboot if that makes you feel better; it also allows you to test
that the system will come up with the correct configuration.

You can verify ypbind's connection to the server (a “binding” in NIS parlance)
using the ypwhich command. You can also manually look up information: the
command ypmatch joe passwd will show Joe's entry from the NIS password
map.

The Net: Enabling NFS

Now that NIS is working, let's attend to NFS. Depending on who you listen to,
NFS is either the evil beast or the magic bullet to all your user data-related
problems. In my opinion, NFS makes a large network with huge amounts of
user data easy and transparent to set up, but it comes with a massive
performance penalty common to all networked file systems. Count on NFS
access being on the order of ten times slower than local hard disk file access.
Slow or not, large sites simply can't live without NFS.

That said, setting up an NFS client basically follows the same steps as for the
NIS client: software installation, server side configuration and client
configuration changes.

NFS requires a kernel built with support for it, presumably as a kernel module,
but you can compile it into the kernel itself if you wish. If your kernel does not

yet have NFS support, you need to enable it under “Filesystems”. Go to your
kernel source directory (most likely /usr/src/linux) and type make xconfig or
make menuconfig. Obviously, to use NFS, the kernel needs to have network
support enabled. After compiling and installing the NFS module, your system
has all the software it needs. I'd suggest you install one piece of optional
software, though, which is showmount. Look for a package called something
like nfs*client* on your distribution CD-ROM.

On the NFS server, there is usually a file stating which file systems are exported.
Depending on the flavor of UNIX, it can be called /etc/exports (SunOS, Linux,
*BSD), /etc/dfs/dfstab (Solaris, other System V variants), or something
completely different. An OS-independent way of finding that information is to
run the showmount command against the NFS server, e.g., showmount -e. This
will list the exported file systems and also the machines or groups of machines
allowed to mount them.

Large sites usually have a need to manage machines in groups. For example, all
users' desktop workstations should be able to mount any of the home
directories, whereas only servers might be allowed to mount CDs from a
networked jukebox. In NIS, this mechanism is provided by the netgroup map,
and chances are the showmount command will list only the netgroups allowed
to access specific exports. A sample output would be

/home/ftp (everyone)
/homedesktops
/var/mail mailservers

everyone is a special name denoting every machine, while desktops and
mailservers are netgroups. Executing

ypmatch -k desktops netgroup

might produce:
desktops: penguin, turkey, heron

For your Linux machine to be able to access the /home, NFS share requires it to
belong to the desktops netgroup. Otherwise, the server will deny access.

Once your server lets you in, the last obstacle is advertising the NFS exports to
your client. The easiest way to handle this is a permanent mount entry in your /
etc/fstab, such as:

bigboy:/export/home /home nfs 0 0

This way, /home would be hard-mounted on each boot. While this approach
certainly works very well, it has limitations. At our site, we have a mount point
for each user's home directory; e.g., /home/joe for Joe and /home/sue for Sue.

With 1200+ users distributed across ten file servers, hard-mounting each
directory would require much housekeeping, and a server replacement or
elimination would be a major headache.

Fortunately, there is an elegant way around this, called the automounter. This
enterprising little daemon watches a set of mount points specified in files for
access by the operating system. Once an access is detected, the automount
daemon tries to mount the export belonging to the mount point. Other than a
slight delay, neither applications nor users notice a difference from a regular
mount. As might be expected, the automounter will release (umount) a
mounted file system after a configurable period of inactivity.

To make use of the automounter, install the autofs package and look at the files
it installed in the /etc/auto directory. The first and most important is /etc/
auto.master which lists each mount point to be supervised by the automounter
and its associated map, usually named /etc/auto.mountpoint. Each of these
maps follows the basic schema set forth in /etc/auto.misc:

d -fstype=iso9660,ro,user :/dev/cdrom
fd -fstype=auto,user :/dev/fd0

In this example, /misc/cd is mounted with the usual options associated with a
CD drive on /misc/cd, whereas the floppy currently in drive /dev/fd0 is mounted
on /misc/fd. Note that the mounts will not occur until the directory is accessed,
e.g., by doing ls /misc/cd, and the automounter will automatically create each of
the mount points listed in the file.

“Great”, you say, “now, what's all that got to do with NFS and NIS?” Well, the
automount maps are actually lists which can be maintained on the NIS server
and distributed to the clients. For example, a typical NIS map named
auto.home would look like this:

joe bigboy:/export/home/2/joe
sue beanbox:/export/home/sue

Here, then, is the reason to have the huge number of mount points mentioned
earlier. If Joe changes jobs and joins the finance department, his home
directory can be moved to beanbox. His new entry would then read:

joe beanbox:/export/home/joe

but the mount point on his desktop machine is still /home/joe. In other words,
even though he changed to another server, he does not need to adapt any of
the environment settings, application data paths or shell scripts he might have.
Not convinced? Type grep $HOME $HOME/.* to see how many instances of
your home path are actually saved everywhere.

If, during NIS configuration, you edited your /etc/nsswitch.conf to contain the
line:

automount: files nis

the automounter will read its startup files from /etc/auto.master. After that, it
will query the NIS server for an NIS map named auto.master and will process
the entries accordingly. Thus, the above change for user Joe needs to be made
only one time on one system (the NIS master), and it will be known to all clients.
No entries to forget, no conflicting client configurations. How's that for
efficiency?

Login Scripts: A Uniform Approach

What we've done so far has been largely tech-oriented to let our Linux box be a
part of the enterprise network. Login scripts, on the other hand, are to be
understood on an administrative level. Sites with only a few users may have no
need for them, but if you have to support hundreds or even thousands of users
of varying degrees of computer literacy and quite likely in different physical
locations, you start to look at the situation differently.

Two of the most widely used shells, tcsh and bash, as well as their precursors
csh and sh, utilize a two-step setup procedure. Without going into too much
detail, files called .login and .profile are executed on login. Afterwards and on
each invocation of a non-login shell (opening a new xterm window), a file called
.(t)cshrc or .bash_profile is executed. All of these files reside in the user's home
directory; there is also a system default login and profile script (note the
missing “.”s) stored in the /etc directory.

When a new user is set up at our site, we give her a default set of .login and
.cshrc (the csh variants are the standard shells, but the same could also be
done for bash) plus some other files. The only thing that needs to be adjusted is
the setting for the default printer in .cshrc:

setenv PRINTER

Listing 1

An example default .login script is shown in Listing 1. First, the script figures out
the primary group (inside the backticks) and loads the variable $SETUP with the
path to that group's setup files, e.g., /usr/local/etc/dotfiles/finance if the user's
primary group is finance. Then, a number of so-called setup files are sourced
(included) into the currently running script and the commands in them
executed. In the case of the setup.OPENWIN script, it might look like this:

https://secure2.linuxjournal.com/ljarchive/LJ/068/3528l1.html

setenv OPENWINHOME /usr/openwin
setenv MANPATH ${MANPATH}:/usr/openwin/man
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/openwin/lib

These scripts ensure each user gets the same environment settings for her
particular group. Finally, the windowing system (in this case, OpenWindows,
Sun's version of X) is started. The startup.OPENWIN will not return until the
user explicitly logs out of the GUI, at which time execution of this .login
resumes. It proceeds to delete some files the user may have left behind and
logs the user out of the system.

Again, the beauty of this concept is in its simplicity. If we install a new web
browser, we need to change only the central setup file to point to the newly
installed version. Upon the next login, each user receives the required settings
to start it successfully.

The same concept is also employed for the arrangement of each user's GUI
environment. The OpenLook Window Manager, OLWM, as well as most other
window managers, comes with an application menu which can be customized
to include whichever applications a user might like to access easily. The menu
description is stored in a file named ~/.openwin-menu. Again, rather than
having everyone create or modify their own menus, this file is merely a link to
the central one stored in $SETUP/.openwin-menu. In it, a reference to a private
menu stored in $HOME/.openwin-private gives each user an easy chance to
add personal items. The central menu files are always carefully maintained to
make sure each application works as advertised and are updated each time a
new application is brought on-line. Support personnel are grateful they can
maneuver a user through the menu by phone while looking at the exact same
version of the menu.

Slipping into the Establishment

Listing 2

Integrating a Linux machine into this organization requires the basic setup
scripts to differentiate between operating systems if paths are not the same or
if some features are not available across operating systems. Since
OpenWindows is a proprietary Sun package, a way has to be found for a user to
get her OW setup when logging into a Sun box and getting a reasonably similar
X11 setup on a Linux box. Wanting the least impact on existing scripts, one
good way is to insert the passage shown in Listing 2 into the user's .login. This
example first sources all setups that are common across all platforms, like the
default HTTP proxy settings, possibly the NNTPSERVER variable used by
newsreaders and others. Then, a switch statement treats each supported
operating system independently. In this case, setup.WORDPROC is executed
only for SunOS because we have no word processor for Linux. The

https://secure2.linuxjournal.com/ljarchive/LJ/068/3528l2.html

setup.WEBBROWSER script is also called from the $SETUP directory, because it
can differentiate between operating systems. This makes sense if you use the
same applications across all platforms, e.g., gcc and Netscape. The
OpenWindows and X11 scripts are platform specific.

Adding support for other systems would be easy to implement in the same
way. The “default” statement catches unsupported systems and leaves the user
at a shell prompt. Quitting this shell, as well as quitting the GUI in the other
cases, will continue .login execution and conveniently log the user out.

Having made our way through the setup scripts, the last obstacle to tackle is
the GUI environment. Both X11 and OpenWindows make use of the user's
.xinitrc script. Luckily, this is just another shell script and can be treated the
same way as .login: add a switch statement to distinguish between operating
systems. Generally, this shouldn't be necessary if you take care in setting up the
paths correctly and calling whatever X clients are started in .xinitrc without full
paths. So, rather than having:

/usr/bin/panel
/usr/X11R6/bin/xload
/usr/local/bin/wmaker

to start two clients and the window manager, it is much more convenient to
write:

if [-x panel]; then
 panel &
fi
xload
wmaker

This assumes that both xload and WindowMaker are locatable through $PATH.
The Gnome panel application may or may not be present and will be executed
only if found.

Conclusion

Introducing a renegade operating system like Linux into the holy grail of a
major company's production network takes a lot of enthusiasm, persuasion
and lobbying in addition to a fine feeling for nestling it in as smoothly and
unobtrusively as possible. If people take notice without being pointed toward
the change, something went wrong.

Without sacrificing any of its inherent flexibility, Linux fits the bill almost
perfectly. I always take special pride in demonstrating what Linux can do
whenever one of its commercial brethren fails to accomplish something
satisfactorily, whether it is related to performance issues, the speed and
flexibility of open-source software, or the speed with which the operating

system develops. This benefits the whole company and has led to Tux being a
well-liked companion on many a desk in addition to the server rooms. This is a
testament to the superiority of this OS and should definitely help Linus toward
his ultimate goal after all.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue68/3528.tgz.

Markolf Gudjons (mgu@gmx.net) works as a system administrator for Ericsson
Eurolab, a subsidiary of communications equipment maker Ericsson A/B. He
started out with SCO Xenix in his college days and switched to Linux beginning
with kernel 0.96. He looks forward to being able to run it anywhere, anytime on
the emerging personal computing platforms. His other hobbies include riding
his motorcycle, photography and travel.XX

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/068/3528.tgz
mailto:mgu@gmx.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Post-Installation Security Procedures

Eddie Harari

Issue #68, December 1999

This article discusses a few of the many procedures we must take after the
install is done, so that the system will not be trivial to hack.

Installing a Linux system is a relatively easy task. Most of the distributions
provide automatic installation tools; these tools take care of the installation
procedure from beginning to end. The problem with these automatic
installation tools is that they tend to make the wrong assumptions about your
system. When it comes to security considerations, these wrong assumptions
can cause problems.

Securing Linux is not an easy task. You never know who is trying to gather
information from your servers or even from your desktop. Some people do not
even try to gather information; they just love it when they bring your web
server down or have it show their latest work of art.

The Kernel

The first thing to do after installation is remove unneeded kernel features and
services. The Linux kernel has many nice networking features; some of these
features are needed by our system, some are not. Here are some kernel
networking features we should compile into our kernel: IP-firewalling, Tcp Syn
Cookies, Drop Source routed frames. The IP-firewalling option enables the
setup of IP access lists from the command line. The Tcp Syn Cookies helps to
prevent the known SYN flooding denial-of-service attack. Source-routed frames
allow an attacker to bypass the normal routing decisions by specifying the
routers the packet should go through within the packet data: this is a very bad
idea but is sometimes needed. When compiling the kernel we need to go over
all the options and enable only the options needed by our system. If a kernel
option is needed we can compile it as a part of the kernel, or we can compile
the kernel to support this option as a module. New kernels have new features;

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

when compiling a new kernel we must make sure we know what each and
every option we have enabled does.

Disabling Processes

Listing 1

We can view what processes run in our system by typing ps aux. The network
sockets that are open in our system, can be displayed by typing netstat -an.
Listing 1 shows some of the open sockets on a Linux machine.

The fewer services our system gives, the better. The inetd process listens on the
TCP/UDP sockets specified by its configuration file. The configuration file, /etc/
inetd.conf by default, tells inetd what sockets it should open and what
processes it should execute once a connection is made on the socket. We
should go through all services in the /etc/inetd.conf and disable those that we
don't need on our system. The best way to disable a service is to put a
comment sign # at the beginning of the line that configures the service we want
to disable. It is a good idea to comment all /etc/inetd.conf services and use
secure services instead. As an example, we can disable TELNET and FTP and
enable ssh and FTP through ssh.

If we must enable a service, we should configure the service in the most secure
way it can be provided. The Linux system has many tools to help an
administrator provide services securely.

One of these tools is the IP-Firewalling that the kernel supports. Another tool is
the tcpd, a program that monitors requests for services on the system. It logs
and checks the request, and if all the checks show the client can receive the
service, it will open the right service for the client. There are two files that tcpd
consults when it checks for authorization: /etc/host.allow and /etc/hosts.deny.
To enable tcpd checks before a service begins, we simply tell inetd to run tcpd
in the configuration file. Most Linux distributions are configured to run inetd
with tcpd for most services by default. Here is a line from an inetd.conf that
enables the tcpd checks whenever a TELNET connection request from a client
arrives:

telnet stream tcp nowait root\
/usr/sbin/tcpd /usr/sbin/in.telnetd

Whenever a telnet connection request arrives, tcpd is activated by inetd. tcpd

logs the connection request via the syslogd service, then consults the
hosts.allow file. If the hosts.allow file contains a match of telnetd and the
requesting client, the telnet connection is considered authorized and the
connection is established. If there is no such line, the /etc/hosts.deny file is

https://secure2.linuxjournal.com/ljarchive/LJ/068/3554l1.html

consulted. There must be a line specifing telnetd and client X in the /etc/
hosts.deny files if we don't want client X to be answered by our system.

There are more complicated options available in the tcpd configuration files,
such as running shell commands after a certain connection request occurs. For
further information on the format of the files, look at Section 5 of the manual
for hosts_access and hosts_options.

Another way to disable services run via inetd is to run a shell script instead of
the process. Let's have a look at a simple shell script. Please note that it is not
always safe to use this method

$ cat > /usr/sbin/telnetd.new
#!/bin/sh
echo "Please do not use telnet to this computer.\
Use ssh only if you have the correct public key"
$ chmod +x /usr/sbin/telnetd.new

We then edit the /etc/inetd.conf file so it will execute our new script instead of
in.telnetd. The line should look like this:

telnet stream tcp nowait root /usr/sbin/tcpda\
 telnet.new

Send HUP signal to inetd , so it will read the new configuration:
kill -HUP 'ps -aux | grep inetd |
awk '{print $2}' '

Test the new configuration:
$ telnet localhost
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Please do not use telnet to this computer. Use ssh only
if you have the correct public key.

We must remember that each of the processes run through inetd has its own
configuration file. In these configuration files there are security settings that
can be activated. We can set up these security settings so the services will get
extra security. Take FTP, for example; we can use tcpd to check FTP requests,
but as an extra security we can use the ftpaccess file to disable ftp access for
root just in case. If our machine has more than one Network Interface Card, we
may want to use daemons that enable us to specify on which NIC they should
open a socket. This type of setting can't be done with inetd in a trivial way.
Some of the FTP daemons enable these settings via the configuration file. There
is another method to force a network daemon to listen only on a certain
interface. Suppose our machine is connected to network A and network B, and
it has two IP addresses: IA and IB. We want telnetd to listen only on IPA, so we
write a simple program that opens port 23 on the IPB interface and make this
program run just before telnetd. After telnetd is up and running, we can kill our

little program. This won't work with every possible daemon, since certain
daemons fail to start unless they can open the socket on each and every NIC on
the system.

Networking Applications

Some other networking programs do not run through inetd. These are mostly
daemons that run through the rc files at system startup. When not needed,
these daemons can be disabled by editing the system startup files. The mount
daemon, for example, is the daemon that enables people to mount file systems
from our Linux machine. If we want to disable the mount daemon completely,
we should edit the rc files so the daemon will not run after the system reboots.
If we want to let selected clients in our network work with parts of our file
systems, we can run mountd with a restricted set of rules that will enforce our
policy on the client. This will give the client a limited access to our system.

To configure the mountd restrictions, we should edit the /etc/exports file. The /
etc/exports file is the file the mount daemon consults before it gives
permissions to the client to mount our local file system. Not only can we limit
the clients that can mount our local file systems, but we can also enforce
options such as read-only, nosuid and more on the authorized clients.

Another often used program that listens for connections on the network is the
lpd. The line-printer daemon opens port 515 to listen for connections. We can
edit the /etc/hosts.equiv or the /etc/hosts.lpd files to disable and enable the
service for some clients. With the port# argument, we can tell lpd to listen on a
different port than 515; this is a good trick as long as it is not the only step we
are taking to secure the service.

The X Window System is a network-based window system that enables other
clients to send their application's display to our server. These applications can
be dangerous since they can read our keystrokes and view the display of other
applications on our X server. If we don't need the X networking support, we can
run the X server with the option -nolisten tcp set. This option causes the X
server to not listen to port 6000, and thus not accept connections from any
client. To use this option, simply add it to the clientargs variable in the /usr/X11/
bin/startx script.

If we need to display output from other machines on our X server, we can use
the xhosts and xauth commands to limit the machines and users that can run
applications on our X server. The xhost command is very simple: xhost +

hostname or xhost - hostname.

The + sign indicates the client has permission to run applications on our X
server, using the -display server:0.0 option from the command line on the client
machine. The - sign indicates the client does not have permission to run
applications on our server, and if a user on the client machine tries to run an X
application on our server, he will get an error message indicating he is not
authorized to do so.

Internet Servers

DNS servers must be secured. There is a huge amount of information people
can get easily, just by transferring our zone file to their systems. Sometimes our
zone files contain the inner network addresses of our systems, router
addresses and more.

BIND-8 has many neat security features. The latest version of BIND 8 is 8.2.1,
and I recommend upgrading name servers to this version. It contains support
of access lists (ACL) for zone query and zone transfers. In the BIND
configuration file we can limit the machines that can transfer to each and every
zone. One more thing we can do is to put our local network zone, if any, in a
secure mode, so that named will only answer queries of names belonging to
that zone to clients in our local network. There are built-in ACL names such as
any and none which we can use in the named configuration file. One big
advantage of the new bind versions is the logging. With version 8 we can tweak
the logs to show anything we would like to see. And when it comes to security,
the log is a very important issue. Listing 1 is an example of a configuration file
allowing only local hosts from network 192.168.1/24 to query all zones; it also
allows queries from anywhere on the network to query the outside zones only.
One more thing to look at in this named configuration file is that zone transfers
are only allowed to two other machines on the network and only for the
outside zone.

Listing 2

We can play with these new features of named and disable “dns relaying” by
allowing the world to query only zones for which our name server is
authoritative, and enabling other queries only from our local networks. This
kind of setting will disable the possibility that someone from the Internet will
send recursive requests to our server.

Another nice feature in the BIND 8 is that the named can run in a chrooted

environment; this means that if a hacker exploits the named, it will not have
access to all of the file system, but to a very small part of it. To make named run
in a chrooted environment, we can use the -t option from the command line.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3554l2.html

The last thing about the DNS is we can make the name daemon run as a non-
root user. This is a very good thing to do as in many other programs as in
addition to named. By running a process as root, we actually give the process
the permission to do anything in our system; we can accept that as long as the
process does only what it was programmed to do in the first place. However, if
someone can make this process run arbitrary code, for example, then this
arbitrary code will run as root. This means any bug or buffer overflow found in
this process can give the hacker a root privilege. Since we don't want to make
the hacker's life easier, we can have the named run as a different user.

To accomplish this task, we first add the appropriate user and group to the
system. Than we use the -u and -g options from the command line, to specify
userid and groupid to the named process. [More discussion of “Securing Name
Servers on UNIX” can be found in the article of that name in this issue.]

POP, IMAP and Others

The problem with POP, IMAP and some other well-known protocols, such as
TELNET and FTP, is the user name and password are sent from the client to the
server in clear text. This means someone can tap the communication between
the server and the client and get user names and passwords. It is also possible
to make a brute force attack on the server trying to guess user names and
passwords. We can take care of brute force attacks by running a server that
checks for such things. Some POP and IMAP servers close the account after five
bad passwords are entered; the account is opened only after a waiting period
or it may have to be opened manually. There is an interesting solution to clear
text passwords. Some of the services support challenge-response passwords as
well as the trivial passwords.

For example, we can get a clear TELNET connection with the SKEY package. The
SKEY package gives the user a “One Time Password”; even if someone taps the
line and gets the password, he can't use this password again to enter the
server. Another tool is stunnel which was reviewed by David Bandel in the July
1999 LJ. stunnel gives the ability to connect from client to server in a secure
encrypted way for several purposes, such as SMTP, POP and more.

Sendmail

One could fill a book writing about sendmail security. I would like to mention
only a few of many more things about sendmail. The first thing is there are
alternatives out there that claim to be much more secure then sendmail. It
might be worthwhile to test one of these applications. One more thing about
sendmail is that with a very simple program a hacker can try to get many user
names from our system by using the VRFY protocol command. The VRFY and
the EXPN protocol commands should be disabled in the /etc/sendmail.cf file. To

disable these commands, we should use the following line in the sendmail.cf
file:

O PrivacyOptions=authwarnings\
noexpn novrfy

This option will prevent sendmail from answering to VRFY and EXPN
commands. It will also cause sendmail to complain about weak security
settings. One last thing I like to do with sendmail is to remove the version
number from its HELO string, so the version number will not be known to the
outside.

Conclusions

Much work needs to be done when it comes to security. We should check every
day to see what new hacks have appeared and which software should be
upgraded for security reasons. When installing a new application, we should
always look at the security settings and set them as tight as possible. It will not
make our system 100% cracker proof, but it will make it much harder for the
cracker to get into our system.

Eddie Harari can be reached via e-mail at
eddie@sela.co.il.

Eddie Harari (eddie@sela.co.il)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:eddie@sela.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Securing Name Servers on UNIX

Nalneesh Gaur

Issue #68, December 1999

Because the DNS plays such a vital role in the Internet, it is important that this
service be protected and secured.

The Domain Name System (DNS) is essential to the functioning of the Internet.
The DNS organizes the Internet into distributed hierarchical domains. This
hierarchical domain structure provides ease of administration and scalability. It
must be kept secure.

In July of 1996, Eugene Kashpureff was able to hijack the www.internic.net
(Internic) web site to www.alternic.net (Alternic). As a result, visitors to the
Internic net site were directed to the Alternic web site. This was done without
authorization from Internic. In late 1997, Kashpureff was arrested in Canada.
He pleaded guilty to computer fraud in March of 1998. This incident serves to
demonstrate the importance of DNS and the impact that a security attack on
the DNS could have on organizations that provide services on the Internet. In
today's era of e-commerce and “webification” of everything, DNS security is
imperative.

BIND (Berkeley Internet Name Domain) is an implementation of DNS. I will
describe here the vulnerabilities discovered in BIND and measures you can take
to protect against them. I will assume you are familiar with the workings of the
Internet and the DNS architecture.

BIND Versions

Two major BIND versions are available today: BIND version 4.9 and the BIND 8
series. Most new development of BIND continues on the 8 series. The latest
BIND, version 8.2.1, was released on June 21, 1999, and is available from http://
www.isc.org/. In the 4.9 BIND series, the latest version of BIND is 4.9.7.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.isc.org
http://www.isc.org

BIND is usually available as part of most UNIX-based operating systems.
However, vendors tend to be behind in adapting to the latest BIND version. You
can determine the version of BIND provided by the vendor of your operating
system by checking the system log files.

The Internet Software Consortium (ISC) sponsors the development of BIND. The
latest version of BIND provides many new features and security enhancements.
Chief among these are full support for negative caching, the ability to run
multiple virtual DNS servers, bug fixes from previous versions and performance
enhancements. Table 1 compares some of the primary differences between
BIND 8 and BIND 4.9.7. The ISC states the following about the two different
streams of BIND:

BIND version 4 is officially deprecated in favor of BIND
version 8 and no additional development will be done
on BIND version 4, other than for security-related
patches.

Table 1

BIND Vulnerabilities and Issues

The risk to a BIND server may arise from a need for a functionality that can
leave the BIND server susceptible to attacks, mis-configuration of BIND and
vulnerabilities in BIND. The following vulnerabilities/issues in BIND could be
exploited.

Cache Poisoning

This vulnerability exists in all versions of BIND prior to version 4.9.6 and version
8.1.1. It allowed an intruder to cause a victim name server to query a remote
name server controlled by the intruder. The remote name server would return
bogus information to the victim name server. The bogus information would be
cached on the victim name server for a period specified by the TTL field of the
record returned by the remote name server. Very simply, this attack allowed
the intruder to point the victim name server's host name IP address mapping to
an alternate IP address of the intruder's choice. Eugene Kaspureff used cache
poisoning to divert the traffic from www.internic.net to www.alternic.net.

Inverse-Query Buffer Overrun

BIND versions prior to BIND 4.9.7 and BIND 8.1.2 are vulnerable to this. This
vulnerability allowed an intruder to gain root-level access on the victim name
server, or just cause the server to crash. Earlier versions of BIND allowed the
inverse-query feature (see Glossary). Actually, according to the DNS
specification, the inverse queries are optional. By default, the servers are not

https://secure2.linuxjournal.com/ljarchive/LJ/068/3691t1.html

configured to respond to fake queries. However, BIND 8 can be configured to
provide fake responses to inverse queries. It is those servers configured to
respond to fake queries that are vulnerable. The inverse-query feature code is
disabled (commented out in source code) in BIND versions 4.9.7 and later.

Denial of Service

BIND version 4.9.7 and 8.1.2 perform better bounds checking than the previous
versions. The previous BIND version could be exploited to access an invalid
memory location causing the server to crash. A crash leaves the name server
unable to answer queries, which is a denial of service.

Zone Transfers

Slave name servers perform a zone transfer from the master name server to
update their zone database. By default, the master name server will permit
zone transfer requests by any host. This does not strictly fall in the category of
vulnerabilities. However, the name server contains valuable information about
network resources. Information such as the host names, number of hosts,
textual information on the hosts (HINFO, TXT) and names of mail servers is
made available in zone transfers. Hence, it provides the intruder with
intelligence information that can be utilized to launch other types of attacks on
an enterprise.

Unauthorized Dynamic Updates

Dynamic updates are associated with BIND versions 8 and later only. Dynamic
updates do not apply to the BIND 4 series. The dynamic update feature allows
authorized hosts to update the zone records of a name server. If improperly
configured, an intruder may be able to add/delete/replace the records for a
zone.

Allowing Recursive Queries

This falls more in the category of misuse or abuse of the name server by
individuals outside your organization. To put it simply, anyone on the Internet
can use your name server to perform recursive queries. This can cause your
name server to become extremely busy in responding to everyone else's
queries. Additionally, everyone on the Internet will be using your bandwidth to
do so. Furthermore, this is related to the cache-poisoning vulnerability.

Securing DNS

https://secure2.linuxjournal.com/ljarchive/LJ/068/3691f1.large.jpg

https://secure2.linuxjournal.com/ljarchive/LJ/068/3691f1.large.jpg

Figure 1

This section focuses on measures that name-server administrators can take to
secure their DNS environment on UNIX. Figure 1 displays a flow-chart-based
approach to securing BIND. The following measures, when implemented
properly, will assist in securing BIND.

Use Most Current Version of BIND

The system syslog files contain information about the current version of BIND a
system is running. The BIND 8 series provides greater granularity in defining
ACLs (access control lists) and configuring the name server. More specifically,
BIND 8 series is preferred over BIND 4. Using the most current version of BIND
8 series will protect against the cache poisoning, inverse query buffer overrun
and the denial of service vulnerabilities.

Restrict Zone Transfers

BIND provides configuration options to restrict zone transfers. By default, Zone
transfer is enabled and anyone can perform zone transfers against the name
server database. The ls {domain_name} command in nslookup facilitates this.
To restrict zone transfers, use the allow-transfer and xfernets configuration
statements in BIND version 8 and 4.9, respectively.

Establish Access Control on Queries

This is necessary to restrict the hosts that can query the name server. In
particular, this is useful for zones internal to an organization. Furthermore,
restricting queries minimizes exposure to the cache-poisoning vulnerability. By
default, BIND permits anyone to query, even for zones for which a name server
is not authoritative. Only BIND 8 provides ACLs for queries. The BIND 8
configuration statement allow-query is used to define the ACL for queries
based on IP addresses.

Restrict Recursive Queries

If recursion is not desired, it is best to disable it. Such non-recursive servers are
responsible for answering queries for the zones for which they are
authoritative. In addition, these servers are difficult to spoof because the server
does not cache any data. Most often, internal clients send a recursive query to
the name server. In such cases, recursion may be desired and must be enabled.
Such servers must permit recursion and establish ACLs on queries (allow-

query).

https://secure2.linuxjournal.com/ljarchive/LJ/068/3691f1.large.jpg

Restrict Dynamic Updates

Dynamic updates are a feature of BIND 8. By default, BIND 8 disables dynamic
updates. If dynamic updates are required, such updates should be restricted to
individual IP addresses rather than network addresses. The allow-update

configuration statement defines the addresses from which a server will accept
updates.

Prevent IP Spoofing

BIND statements such as xfernets, allow-transfer, allow-query and allow-update

statements define ways of restricting many features by IP addresses. This type
of configuration does not provide any protection if the IP addresses are
spoofed. To protect against IP spoofing, network administrators must establish
proper IP spoofing controls on the firewalls, bastion hosts and intrusion
detection systems (IDS).

Architectural and Other Considerations

Some other measures that can be used to secure the name servers include the
use of split-brain name servers and removing unnecessary information from
the DNS database.

Split-Brain Name Server

A split-brain name server consists of two separate name servers. These are
quite common in a firewalled environment. Typically, one name server
(sometimes referred to as the external name server, outside the firewall)
provides information on the web servers, the MX records, other name servers
and names associated with any other services offered by a location. The other
name server, inside the firewall, contains information on the other name
servers in the enterprise. As you can see, the external name server is the
interface to the outside world and therefore provides only minimal
information. To provide further protection, the external name server can be
configured to turn off recursion.

Name Servers with Defined Roles

The idea is to differentiate between name servers that permit recursion and
those that do not. It is necessary to permit recursion on some name servers so
that clients issuing recursive queries continue to operate. In such situations,
one name server can be configured with recursion turned off. Such a name
server is authoritative for its zone and will reject recursive queries. Typically,
this is the type of server registered with the network domain registries. The
other name server permits recursion; however, it permits such queries from

only a few authorized hosts/networks. This allows only authorized resolvers to
query the recursive name server.

Remove Unnecessary Information in Database

Unnecessary data in the name server makes it easier to gather intelligence
from the name server. Information such as the names of users and
administrators, phone numbers and detailed information about the host's
make and model, if unnecessary, may be omitted from the name server
database.

Run BIND as a Non-Root User

BIND normally runs as root. Running BIND as root may allow an intruder to
exploit vulnerabilities, allowing them to run commands and read/write files as
root. BIND server 8.1.2 and later provide you with the option to run BIND as a
user other than root. In addition, BIND 8 also provides the option to chroot the
name server. The u and t options to the name server daemon accomplish this.

Conclusion

Significant security enhancements and improvements have been made in the
BIND implementation of DNS. At a minimum, install the most recent version of
BIND to protect against commonly known BIND vulnerabilities. To further
secure your environment, use the security configuration options in the latest
release of BIND. Be careful when you apply BIND updates to your environment,
especially if you obtain them from the ISC web site as opposed to your OS
vendor. Proper care must be taken when applying vendor patches. Often,
vendor patches will overwrite the BIND executable and other related files. The
result may be a broken or vulnerable name server.

To keep up with the latest developments in BIND, read the BIND newsgroups,
periodically check the ISC web site, and review all DNS-related announcements
from your OS vendor. BIND 8.2 includes DNS security features as specified by
RFC 2065 (DNSSEC, DNS Security Extensions). The DNS security features use
public key cryptography to provide data origin authentication and data
integrity. Each zone has its own private/public key and uses its private key to
sign the resource records. The DNSSEC extensions are currently not widely
deployed. Under DNSSEC, the public key of a zone needs to be signed by its
parent zone. As of this writing, the Internic does not yet sign the child zone
keys.

Finally, it is most important to say that DNS is only a service, meaning you will
be able to access a resource if you have its IP address. Your name server is only
as secure as the network and other servers on the network. It is thus

paramount that you have suitable network and server security measures in
place before trying to protect your name servers.

Resources

Glossary

Nalneesh Gaur (Nalneesh.Gaur@gte.net) is a manager in the eRisk Solutions
practice of Ernst & Young LLP in Dallas, Texas. He has specialized in UNIX and
Windows NT systems, integration and Internet/intranet security issues for a
number of years.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3691s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3691s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

1999 Editors' Choice Awards

Jason Kroll

Marjorie Richardson

Doc Searls

Peter Salus

Issue #68, December 1999

Once again, it is time to present our annual awards to those we feel deserve
recognition for their contributions to forwarding the Linux cause in the real
world.

Welcome to the 1999 Editors' Choice Awards, brought to you by the same cool
cats who bring you Linux Journal. This has been an extremely exciting year for
the world of Linux in all areas. We have witnessed an explosion in many areas,
and the spirit of open source is stronger than ever throughout the entire
community. Last year Netscape brought open source to the masses, and we are
stronger now in numbers and spirit. This year saw major improvements to the
various distributions, a wildly successful IPO, and more attention from the
business world and software firms than for other platforms, not to mention the
successes of the kernel developers and the proliferation and growth of
projects. As for the Editors' Choice Awards, there were many qualified
candidates, and while sometimes the winners were obvious, other times we

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

had to choose the best among peers. Here are our choices, we hope you agree
with most (or at least some) of them!

Product of the Year: Caldera Linux 2.3 for LIZARD

Caldera with some help from TrollTech has finally delivered what Linux users
and Linux critics have been asking for—easy Linux installation. Not only does
LIZARD (LInux wiZARD) make a complete installation with an easy-to-use
graphical interface, it automatically probes hardware and installs while you are
making configuration decisions about the system. Recent major improvements
include automatic detection and support for sound cards, as well as releasing
LIZARD as open source under the QPL. LIZARD makes Linux installation
practically automatic, setting a new standard across the Linux world. Now Linux
is more accessible than ever. And, the Caldera figures who come on during
installation are so exciting, we in editorial have been known to install Caldera
over and over again on the same machine just to watch what we call “the
Ransom dance”. Thank you Caldera and TrollTech.

Best New Hardware: VA Linux Systems ClusterCity & VACM

VA Linux Systems has developed the most advanced Linux Beowulf cluster and
requisite management software. ClusterCity is the name of the system, and
VACM (pronounced “vacuum”) is the management software released under the

GPL. Not only is the cluster convenient and flexible (rack mounted with easy
access to components, as opposed to many clusters which are dozens of
desktop boxes stuck together consuming a lot of space), the VACM software
represents a major leap forward in cluster management technology. ClusterCity
and VACM are to be formally unveiled at SuperComputing 1999. One
outstanding (and rather “modern”) feature is that VACM allows complete
remote access to everything, including the BIOS configuration, RAID control,
power, system diagnosis, as well as the usual cluster management activities. As
Linux storms the server world and marches across the desktop, VA is leading
the charge into commercial supercomputing. ClusterCity is already in use by
numerous scientific and Internet organizations.

Best New Application—Software Development: BXPro & Code Fusion

This award goes jointly to ICS's BXPro (Builder Xcessory Pro) and Cygnus Code
Fusion for their cooperative effort to coordinate their two development
products to provide what is essentially the first Visual

C/C++ equivalent for Linux. BXPro and Code Fusion are distribution
independent, the former being a fast GUI builder and the latter being a
complete C/C++/Java IDE which mostly cooperates with the open-source world
of Makefiles. Flexibility and cooperation deserve recognition and help to make
top-of-the-line software even better. In fact, one of the rare good qualities of
MS products is that they cooperate well with each other (though they tend to
be most disagreeable with everything else), so let's see if we can win here too.
Even though many are opposed in principle to commercial software, these
products set an example for open-source coders—if successful, these products

could become models for future projects. In the meantime, let's see what
software gets written with these excellent development applications.

Best New Application—Embedded Systems: Lineo Embedix

Lineo, which recently branched off from Caldera, has delivered Embedix, an
embedded Linux OS based on Caldera OpenLinux. Contrary to the trend of
making enormous distributions with more packages than the competitors,
Lineo concentrates on packing more Linux into smaller packages. The modular
kernel is designed for OEMs to have an easy time adding the software they
need, and Lineo provides EmbedixSDK as an embedded software development
platform for writing and testing software before embedding it. Currently, Lineo
and Caldera are working with Motorola, with others to come in the near future.
Embedded systems are going to be a major frontier, and one might speculate
how far embedded Linux will go? Could it become even more successful as an
embedded product than as a desktop OS? Very likely, exciting times are ahead.
Check out our October 1999 issue for an interview with Lineo's Lyle Ball (hint:
it's the issue with Lyle Ball on the cover with a Motorola box).

Best New Application—End User: Loki's Civilization: Call to Power

Congratulations to Loki Entertainment for its excellent port of the current
incarnation of what is probably the ultimate world-domination game.
Civilization is the first commercially available, high-quality Linux game (with
possible exceptions depending on your point of view), which hopefully will
usher in a new era in Linux—the proliferation of games. Nothing makes a
better “killer app” than a killer game. Loki has already delivered more ports of
top-quality games, including Myth II and Railroad Tycoon and is at work on
Heavy Gear II and Heretic II. Linux Journal interviewed Scott Draeker (founder
of Loki) and Sam Latinga (lead programmer) in the August 1999 issue. “Civilized
gentlemen” was the verdict.

Best New Gadget: Empeg Embedded MP3 Player

Empeg Ltd. of the UK has developed an mpeg player for your car, embedded
with Linux. Why Linux? Because they “like it a lot, and worship Linus on a daily
basis at our own personal shrine,” says their tech page. Empeg uses a
StrongARM processor and a big hard drive and has a toolkit for Linux and an
interface so that Windows users can load their favorite mpegs (depending on
the model, up to 500 albums) into the player. Linux hackers, we're sure, can
figure out what else to do with it. The system features 18-bit DACs, 5-band EQ
for each of the 4 channels, an FM radio, bass, treble, loudness, balance and
fader controls, and gold-plated connectors, among other things. Although the
Windows interface is more full featured than for Linux, the developers use the
Linux interface. Empeg proves the viability of Linux in small, embedded
gadgetry.

Best New Book: Open Sources: Voices of a New Revolution

Open source is the revolution, a movement which could restructure and
reshape the digital-information age the way the 1960s revamped Western
society. Despite its occasional factual inaccuracies (which have a charm all their
own), this book collects several essays from the important figures at the head
of the GNU/Linux Open Source scene. Although many excellent technical
manuals were introduced this year, a comprehensive collection of open-source
insights and philosophy means more to the community at large than any one,
single technical manual. We are in the midst of a revolution, a period in the
history of computers which hopefully we can appreciate before it is over and
we look back on it. Open Source is a movement which runs much deeper than
many of us appreciate, encompassing those who are concerned with the
capability of producing high-quality, powerful software, and those who uphold
freedom, community and principles as the core of the philosophy. This book
helps us to appreciate the true meaning of our movement.

Best Business Solution: Burlington Coat Factory

Inspired by summer interns who wanted Linux on their workstations,
Burlington Coat Factory installed 1,250 Linux machines from Dell in its 264
stores. In spite of popular allegations that Linux is unsupported and has no
software, Red Hat is providing the Red Hat Linux distribution and technical
support, while Applixware is providing the business software and additional
support. Burlington Coat Factory CIO Mike Prince has long been known for his
ability to pick up on technologies early; his track record includes adopting UNIX

and Java long before everyone else, for example. Once again, Linux is proving
itself in an extremely successful company, with Red Hat and Applixware
showing that Linux firms are enthusiastic to provide software and support.
More people may come to embrace Linux not only as a moral alternative to
proprietary software but as a practical business solution, viable even for
businesses that aren't high-powered computing firms crawling with engineers.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

X-ISP

Ibrahim Haddad

Issue #68, December 1999

The purpose of this article is to introduce the readers to X-ISP.

Living in the “information highway” era, we must all connect our computers to
the Internet to be able to send e-mail, read newsgroups, browse the Web and
communicate with the world in general.

Configuring your machine to connect to the Internet via your ISP can be an easy
or difficult process, depending on your choice of operating system and tools.

Since Linux is our platform of choice, we are left to select the tools to use. Using
X-ISP to configure our machine insures that we can connect our Linux boxes to
the Internet in a short time, without any problems and with the advantage of
using an X-based interface.

X-ISP is a visual, X11/XForms-based, user-friendly interface to pppd/chat. It
offers an X11 dialup networking tool that can also act as a small ISP and phone
company (PTT) database manager, and also as a tool to log dialup costs and
usage. In addition to that, it provides maximum feedback from the dialing and
login phases on a message browser (Figure 1), versatility in interrupting a call in
progress, a manual login terminal window as well as call-back and DNS server
selection capabilities.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

User Interface

Figure 1. X-ISP Main Window

The user interface of X-ISP is very simple, intuitive and user friendly. It consists
of a form with four buttons (Connect, Interrupt, Disconnect and Quit), three
menus (Options, Logging and Help) and a drop-choice list of ISP entries (in case
the user wants to configure the machine to dial more than one ISP). The
“Options” menu contains the five items discussed below.

Figure 2. Setting User Account

Information: The user can create ISP entries, set the default ISP, set auto-dial
and re-dial on disconnect options and the authentication protocol (none, PAP,
PAP-Secrets or CHAT-Secrets). In Figure 2, X-ISP is configured to connect to any
of the three ISPs: Cyberia, Data Management or IncoNet (actual ISPs in
Lebanon) with Cyberia as the default ISP.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3122f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3122f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3122f2.large.jpg

Dialing and Logging: From the dialing and logging window, the user controls
several options such as the Dialer Options (number of maximum dialing trials,
inter-dialing delay, maximum wait time for connection to be established, etc.),
and the Manual and Automatic Logging options. The script section, for both
dial-in and call-back, is divided into Expect and Send sections, as used by the
call to the chat command. Here, the user must enter the script lines employed
by chat to negotiate a successful login for the particular ISP.

Communication Options: These control the settings of the modem device and
its properties (Reset and Init strings, baud rates and flow control), dialing
method and asyncmap, software compression, serial port baud rate and flow
control. All of these options have an initial default value.

Figure 3. Communication Setup Window

TCP/IP Options: controls the settings of dynamic local and remote addresses,
netmask and DNS.

Figure 4. Setting Up the TCP/IP Options

Paths Setup: enables editing the paths to the pppd daemon, the location where
pppd saves its process ID files, the chat utility, the xispdial and xispterm

utilities, and where XISP will keep the named pipe node used for
communicating with its components.

Figure 5. Paths Setup

The “Logging” menu contains the following two items:

PTT Editor: This form enables editing of phone company information
maintained by X-ISP. The user can add his local phone company to the
compiled list and set up its rates. This way, when the user retrieves on-line
statistics, he will receive a report of the actual cost.

Statistics: This displays time/cost information and also makes a bar chart of
costs for each period (weekly, monthly and bimonthly).

Figure 6. Setting up PTTs

X-ISP Advantages

The X-ISP package implements a user-friendly interface to pppd/chat and
provides maximum feedback from the dial-in and login phases on the browser
screen. It saves a lot of time compared to configuring PPP manually. X-ISP has
several advantages over manual configuration:

https://secure2.linuxjournal.com/ljarchive/LJ/068/3122f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3122f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3122f6.large.jpg

Figure 7. Connection in Process

• X-ISP enhances the user's knowledge of what is happening while a call is
in progress in a graphical way, rather than the usual scripts that write
output to the terminal.

• X-ISP provides a mechanism to save ISP logs and to keep track of how
many calls you make, their duration and cost.

• One major facility is that the user can maintain two databases: one for the
ISPs and the other for the phone companies (PTTs). This feature allows
the user to configure his machine for more than one ISP and for more
than one account with every ISP.

• The phone company database supports all (known) PTT attributes
applicable while logging phone-call costs, and saves its information in a
separate file in the subdirectory /.xisplogs in the user's home directory.

X-ISP Requirements and Installation

X-ISP was developed by Dimitrios P. Bouras and can be downloaded at no
charge from http://users.hol.gr/~dbouras/.

In order to install the X-ISP package on your system, four requirements must be
satisfied:

• The ppp-2.2.x package must be installed on the system.
• X11R6 (XFree86 version 3.1.2 or newer) must be installed.
• The xforms libraries (version 0.88 or newer) are needed. You can

download a copy from either http://bloch.phys.uwm.edu/xforms/ or
http://bragg.phys.uwm.edu/xforms/.

• A copy of the XPM library (version 3.4 or later) is also needed.

http://users.hol.gr/~dbouras
http://bloch.phys.uwm.edu/xforms
http://bragg.phys.uwm.edu/xforms

Once these requirements are fulfilled, installation is straightforward. I have
installed X-ISP on several machines (Slackware 3.4, kernel 2.0.30) by running
make and make install. I was surprised I did not have to re-edit any
configuration file or fix file permissions or anything. It worked perfectly from
the first trial. However, in case you run into trouble, an explanation on solving
your installation problems is in the documentation.

Documentation

X-ISP comes with a large amount of technical documentation discussing
implementation issues, security, architecture, and the interaction between the
different components. It also has a good help facility that guides the user
through setting up X-ISP step by step. Help is also available on-line from the
main window.

Final Word

X-ISP is a very well-thought-out tool. It gives us what we need: a fast way to
configure the machine, graphical interface, a graphical control over the chat
scripts, and a way to tracks time and cost.

Ibrahim F. Haddad is a Ph.D student at Concordia University in Montréal,
Canada. Ibrahim got his master's degree from the Lebanese American
University (Byblos Campus, Lebanon) where he was first introduced to Linux in
1994. Among his interests are Internet/Intranet and Web development, e-
commerce and distributed objects. Ibrahim can be reached via e-mail at
ibrahim@ieee.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

MultiFax

Marcel Gagné

Issue #68, December 1999

Psst! Want to create a Windows broadcast fax system with web-based
administration using Linux? Come over here and we'll talk.

Faxing is one of the world's great business constants. This ubiquitous
technology has changed the world and can be found in any office and a
number of homes around the world. Even when we don't have dedicated fax
machines, we use PC or network-based faxing. Putting a fax modem on every
PC in your organization doesn't just sound ridiculous—it is. Might I then humbly
recommend a great fax solution, free of charge, combined with the
dependability of Linux? Wonderful!

While deciding on how to present this article, I thought about all the great free
software available for Linux. Your Linux distribution CD contains thousands of
such programs. The catch is that not all of them are pretty—extremely
functional, but not pretty. Windows users still shudder at the thought of the
dreaded command line. So how do we, Linux gurus all, protect them and
impress them with the power of our Linux servers? I can hear some of you
saying “We don't!”, but seriously, Windows is still out there and will be for some
time. Convincing users from the Windows world that hidden behind the
command-line interface is a product that will satisfy their needs is sometimes
difficult, even when it's something as simple and useful as free network faxing
for the office.

As developers and supporters of what will invariably become the next great
operating system, both as server and on the desktop, we can ease the
confusion of the terrifying command line by wrapping the solutions we offer in
friendly, easy-to-use interfaces. My solution often involves hiding the magic of
the command line behind a friendly web-style interface. After all, everybody
loves their browser—http://www.allplaynowork.com/, anyone?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.allplaynowork.com

I will show you how to create an integrated fax solution for your Windows 9x
users to make faxing as easy as printing. Using the web-based administration
tools, you can then off-load some of the responsibility for watching all those
faxes go through to your users.

At the end of the article is a URL link from which you can download the full
distribution for MultiFax. Find yourself a nice comfy chair, and we'll begin.

Hardware! I Must Have More Hardware!

Well, luckily, not much. You should take a moment and think about this one,
though. Will you be using your fax modem as a permanent fax solution, or will
you be sharing the fax modem with a dial-on-demand PPP connection? The
answer will define whether you can use your current fax modem, or whether
you should consider adding another to your system. In my case, I use the same
connection for Internet access as for faxes. When I need to pick up a fax (or
send one out), I simply take down my Internet connection (by killing my diald

process), and start a single process for the fax. In a busy office, that may not be
such a hot idea.

Nuts and Bolts—mgetty+sendfax

Gert Doering's mgetty+sendfax is a relatively easy-to-use fax solution for the
office, that is, if you're a command-line-savvy Linux user. The great thing is that
it comes with your Linux distribution. Red Hat's package includes it as one of
the default choices during installation. I checked my SuSE distribution as well as
a Caldera CD and they all had it, so finding it should not be a problem. The
latest version of mgetty+sendfax is always available at metalab.unc.edu
(formerly sunsite.unc.edu) under the pub/Linux/system/serial/getty directory.

Combined with Horst F.'s respond utility for Windows, it provides a rugged and
easy-to-use fax mechanism from the Windows desktop. Horst's utility, which
lives on your task bar as a tray icon, appears as a fill-in form whenever a user
submits a fax to the queue. You enter the destination name and phone
number, click OK, and off go your faxes. You can get the respond program at
www.boerde.de/~horstfhttp://www.boerde.de/~horstf. While there, make sure
you pick up the accompanying printfax.pl Perl script and the recommended
smb.conf entry for Samba.

Create a directory on your Windows PCs (or in a shared drive on the network)
and copy RESPOND.EXE there. On my office PCs, I put everything
communications-related in a directory called C:\COMM. Then I have
subdirectories for my applications. RESPOND.EXE lives in C:\COMM\FAX. It
doesn't really matter where it lives, so long as you know where you've put it.

http://www.boerde.de/~horstf

Setting Up sendfax

Once the mgetty+sendfax package is installed on your Linux system (whether
with an RPM install or compiled from source), you will need to set up some
basic configurations before moving on. On my Red Hat 5.2 system, most of
these live in the /etc/mgetty+sendfax directory. Your distribution or install may
put them in a different place.

You can get a lot of detail from the mgetty+sendfax FAQ on setting things up,
but if you're in a hurry to get faxes moving, here are some of the basics. The
config files I took the time to set up are named sendfax.config, mgetty.config,
faxrunq.config and faxheader.

In the sendfax.config file, I set up the following parameters:

fax-devices ttyS1
fax-id 955-555-5555
ignore-carrier y

There are other settings, but I was also in a hurry. Since we have only one fax
modem, I set up ttyS1 as my fax-devices entry. The fax-id is the phone number
your fax modem announces to the other fax machine. The third line is to
correct a nasty US Robotics problem I had with my fax—it tells the fax program
not to hang up between pages of my fax transmission.

On to the faxrunq.config file, essentially, I set only one parameter here. That
was:

success-send-mail Y

Since we have e-mail set up in our office, my Linux system sends us mail when
a fax has been successfully sent out. You may or may not want to set this one. If
you are setting up large broadcast fax lists, you may not want to get a hundred
or more messages confirming each successful fax, or maybe you do. Whatever
you decide, consider this carefully before you set up your system. Fear not,
though—you can always go back and change it if you find that you made the
wrong decision (after you've read your 300 confirmation e-mails).

In my mgetty.config file, I also make only one change:

fax-mode 0666

More on that change later when I discuss security.

Finally, we have the faxheader file. Mine looks something like this:

FAX FROM: **Marcel & Sally** 955-555-5555 TO: @T@
 PAGE: @P@ OF @M@

Okay, so my number is not 955-555-5555—you got me there. This defines the
identification information that appears at the top of every fax we send out.
Pages are numbered for easy reassembly when they are inadvertently dropped
on the floor.

You should also make sure that you have a fax.allow and a fax.deny file in the
directory. The fax.allow is a text file with a simple list of user IDs to be allowed
fax access. The fax.deny file is a list of people who are not allowed fax access.
Alternatively, if you just want everyone to be able to fax, simply omit the
fax.allow file and create an empty fax.deny file. If neither file exists, only root
can fax. For a network fax solution, this is not a good idea.

One last thing in our mgetty configuration, and we'll move on to the Windows
side of the picture. The default umask for /usr/bin/faxspool is 022. Since
faxspool is simply a text file, it's easy to modify the netmask so that network
users can delete jobs. In the script, we comment out the umask 022 default and
add the line umask 000:

Change umask to 000 so that any user can delete
an old fax
umask 022
umask 000

Earlier, I mentioned security regarding spooled jobs. Security concerns will arise
for some users, but in most offices, the fax machine is a fairly public tool. We
look at the network fax queue in much the same way. Anyone can check on
faxes, clean up their sent jobs, or print out incoming jobs. The odds of a co-
worker deleting your job out of spite is generally fairly remote, at least in our
office—I can't guarantee civil behavior in yours. As for outside users, I'll assume
your firewall already takes care of them.

Speaking of outside users: would you like to receive faxes as well? That one is
easy. The mgetty process can be added to your inittab to listen for incoming
calls on your fax modem. Edit your /etc/inittab and add this line:

fax1:2345:respawn:/sbin/mgetty /dev/ttyS0

In the above entry, fax1 is an arbitrary name I've chosen. In your case, you may
pick a different name just as you may need to specify a different device than
my ttyS0. Finally, tell the system to reread the inittab with this command:

init q

mgetty is ready to receive incoming faxes and will restart the listener process
each time it hangs up. In my office, we share the fax with our Internet
connection, so I simply start a single instance of mgetty with this command:

/sbin/mgetty /dev/ttyS0 &

The Windows Side of the Picture

Now we want to give our Windows users access to the network fax. A detailed
description of setting up Samba services is an article on its own, so I won't
cover it here (see Resources). The following snippet from my own smb.conf file
can be appended directly to your smb.conf file to create the network fax entry.

[netfax]
 comment = Network Fax
 path = /home/samba/faxdir
 read only = No
 guest ok = Yes
 print ok = Yes
 postscript = Yes
 printing = aix
 print command = (/usr/bin/printfax.pl %I %s\
 %U %m; rm %s) &

You can now set up a network printer on each of your Windows 95/98
workstations. For a printer type, I use an HP Laserjet 4 PostScript printer and
refer to it as Network Fax. I chose the HP Laserjet 4 more or less at random, but
any PostScript definition should work.

Next, add a shortcut to the PC's startup folder that points to your RESPOND.EXE
program. Remember where you put it? When it runs, RESPOND.EXE will appear
as a small rectangular tray icon in your Windows 95 taskbar.

When a user wishes to send a fax from a Windows program, they simply select
the Network Fax printer from the list. When they click OK, respond will pop up
with a dialogue box similar to the one in Figure 1. Fill in the blanks and click on
“OK” to send your fax.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f1.large.jpg

Figure 1. RESPOND Dialogue Image

Now, since part of MultiFax involves the setting up and maintenance of
broadcast fax lists, you'll need to do things differently if you are sending to such
a list. When prompted for a “Fax Number”, you must enter @ followed by the
broadcast fax group name. For example, if the group name is Toronto, the user
would enter @Toronto.

If you want your users to get immediate confirmation that their fax job has
been spooled (and you probably do), add WINPOPUP.EXE to their startup
folders as well. Winpopup comes standard in the Windows 95 distribution and
lives in the C:\WINDOWS directory. Then, on the “Winpopup Shortcut”
properties tab (accessed with a right-click), I set the Run: option to “Minimized”.
Winpopup starts up out of the way in the Win95 taskbar, and pops up only
when it gets a message. One more thing. Click on “Winpopup” on your taskbar
to maximize it. Now click on “Messages”, then “Options”. Click on the checkbox
for “Pop up dialog on message receipt”, so that Winpopup pops up each time a
message is received.

Winpopup is also a great way for us to send each other little secret notes when
you're supposed to be working, but I never said that.

Installing MultiFax

Now we have mgetty+sendfax ready to go and our Windows PCs all set to fax
away. What we want now is a way to report all that activity through a web-
browser interface. This is where the MultiFax software comes into play.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f1.large.jpg

The MultiFax administration tool consists of a handful of Perl scripts, web pages
and support programs that tie in to mgetty+sendfax. To install MultiFax, follow
these steps.

1. Unpack the bundle into a temporary directory using the tar command.
2. As root, run the install script by typing ./install. The install script will do the

rest.

Now, the Web Stuff

Administering the queue, monitoring the status of outgoing and incoming
faxes, then cleaning up afterward is a little more difficult. You could just have
your system delete everything as soon as it is processed, but my experience is
that people want a bit more feedback. This leaves us with a cleanup job.

Figure 2. Multifax Main Menu

To access the web tools, point your browser to http://your_serbserver_address/
multifax/. You should now be looking at the MultiFax menu (see Figure 2) which
contains these four items:

• Check Outgoing Fax Queue Status
• Check Incoming Fax Queue (or print)
• Update Broadcast Fax Groups
• Documentation

https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f2.large.jpg

The outgoing interface looks at the queue in three different ways: the current
outgoing queue, any suspended jobs and successfully sent old jobs. All three
views offer the opportunity to delete jobs from the queue. The suspended view
has a resend option (when you know beyond a shadow of a doubt that you
have the right phone number). See Figure 3 for an example screen.

Figure 3. Netscape Screenshot of Fax Queue

The Perl script, showfaxq.pl, builds an HTML page by querying the faxq for
current, suspended, or old (successfully sent) jobs. You have the option at each
level to delete a queued job. Strangely enough, the version of faxrm included
with mgetty does not allow you to delete faxes that have already been sent,
only those still waiting to go out. The MultiFax installation will install a modified
version of faxrm that takes care of this strange behaviour.

Sending out queued faxes is the job of faxrunq, also part of mgetty+sendfax.
Processing the queue in this way is probably not what we want to do. There are
actually a couple of ways to automate this. The first is to create a cron entry
that checks the queue and processes it on a regular basis. A good entry for
root's crontab would look something like this:

0,15,30,45 7-19 * * * /usr/bin/faxrunq -s\
1>/dev/null 2>/dev/null

Another option is to run faxrunqd which runs as a daemon and regularly
checks to see if faxes are waiting to go out. This is by far the easiest way. The
cron approach lets you set your own timetable for dealing with the queue.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3274f3.large.jpg

The next part of the screen shows suspended jobs. Along with the delete
option, it is possible to resubmit those suspended jobs to the current job
queue.

Finally, we have the old job listing. The only option there is to delete something
when you are satisfied that the job has completed and the fax has gone.

Dealing with Incoming Faxes

When faxes arrive, you have the option of printing them immediately using the
new_fax scripts or simply stacking them up in the queue and printing them
manually. In order to have your faxes immediately go to a printer,
mgetty+sendfax includes a few scripts to use depending on the eventual
destination of your printout. On my system (Red Hat 6.0), the sample scripts are
in the /etc/mgetty+sendfax directory. On my local server, we use the new_fax.lj

script which formats the output for a Laserjet printer. To use the script, simply
copy (or rename) the new_fax.whatever to new_fax.

The web-based menu lists faxes in the incoming queue and allows for printing
or reprinting of any given page. Each entry is identified by date and time,
sender and page number. Printing the page is simply a matter of clicking on the
red button on the right.

Broadcast Faxing

Now comes the fun part and the real reason a simple web interface for
outgoing faxes became so much more. We had many requests for a package
that offered broadcast faxing at a decent price (or free). After checking the
newsgroups and discovering that those solutions weren't easy to come by, it
was obvious we needed to create one.

The mgetty+sendfax package does allow for broadcast faxing, it turns out. As
mentioned above, you can specify a list name by sending to @listname instead
of just a user name. This would require a user to maintain a text list on the
Linux server. Not too difficult, but what about our Windows users who would
rather not see the shell prompt or deal with vi? It is for those users, after all,
that we are doing this.

Click on the “Update Broadcast Fax Groups” link from the MultiFax menu. You
will be presented with a list of current fax groups. See Figure 4 for an example.
You can add a new group, modify an existing group, or remove a group from
the list. The basic installation has no groups yet, so you will have only one
choice—to add a group.

Figure 4. Broadcast Fax Administration Screen

Let's start by adding a group called “Customers”. Choose “Add a new fax group”
from the list, or simply click on the radio button with the same name. Then click
on “Submit Request”, and you will be presented with the group update screen.
This is the same screen you would see if you chose an existing group and
wanted to modify it. The only difference is your group name is blank at this
time. Enter Customers and tab over to the next field.

Initially, the form has ten rows for names and phone numbers. When you have
filled in all ten, you can continue adding more names by clicking the button
labelled “Modify an Existing Group”. If you need more than ten, just go back to
the broadcast fax menu, select your group (Customers), click on modify, and
you will get another ten fields of names to add. In fact, you will always have ten
free fields.

Finally, you have the option of removing groups which have become dated or
no longer apply. Removing a group from the list starts with the same menu.
When you click “Submit Request”, you will be prompted with the confirmation
request, “Are you sure you want to do this?” after which the group will be
permanently removed.

Documentation? There's Documentation

MultiFax has a fourth menu option with simple, guideline-only documentation.
The MultiFax distribution comes with some READMEs and documentation that
should answer any other questions that might crop up. Using what's there, you
could customize the solution to your own ends.

The Big Wrap-up

Regardless of what you are prepared to spend for a commercial fax solution,
there is no such thing as “plug it in and your whole network is up and faxing
thirty seconds later”. You, the beleaguered system administrator, will have to
do some of your magic to make it happen. Using these instructions, you can
create a Linux/Windows network faxing solution that is dependable,
inexpensive and fairly simple. Add the web-based fax administration software
to that package, and you can unload some of the responsibility of administering
network faxing to your users.

Besides, as system administrators, you've got other more important things to
worry about—like printers, but we won't go there.

Resources

Marcel Gagné (mggagne@salmar.com) is a longtime Linux user—many
different flavours of UNIX, in fact. His company, Salmar Consulting Inc., is a
systems integration and network consulting firm specializing in UNIX and TCP/
IP networking and the odd Windows NT job. He is also a published science
fiction writer with some fantasy tossed in for good measure. When feeling a
great need to lose money and time, he plays co-editor and co-publisher of
TransVersions, a science fiction, fantasy and horror magazine.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3274s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Hell's Kitchen Systems, Inc.

Craig Knudsen

Issue #68, December 1999

Hell's Kitchen Systems, Inc. (HKS) started in 1994 in the Hell's Kitchen
neighborhood of Manhattan and moved to Pittsburgh in 1997. Their flagship
product is CCVS, a commercial credit card processing system.

HKS is now shipping version 3.2 of CCVS (Credit Card Verification System) and
has hundreds of customer sites that include stand-alone merchants, merchant
hosts, merchant-application integrators and merchant-application service
providers. HKS's goal is to embed an electronic payment processor on every
computer.

CCVS uses a computer to perform the same function as a credit-card swipe box
found in most retail stores. Acting independently or as a component of a larger
system, CCVS can process multiple payment types (credit card, ACH, EFT) in
either real time or batch mode.

The system can be used within an electronic storefront on the Internet, or it can
help run a mail-order business with custom-built applications for telephone
operators.

CCVS can be used within the United States or Canada. It can also be used in
other countries with credit-card clearing institutions that support any one of
the CCVS-supported protocols.

Currently, CCVS works with either a modem or a leased line to communicate
with the same credit-card clearinghouses used by traditional credit-card
processing. (HKS plans to support other means of directly contacting
clearinghouses, such as TCP/IP.) This approach has a few benefits. There's no
need to worry about Internet outages disrupting sales. Additionally, most
systems that process credit cards through the Internet (such as CyberCash)
charge a per-transaction fee, while HKS charges only for the CCVS software. If

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the system is not running on the Internet, there's no need for an Internet
connection. This can reduce monthly costs and improve security.

The Linux Connection

HKS first began using Linux in 1995 and now uses it for product development
and payment processing for its own customers, as well as testing and
demonstration. HKS also makes use of Linux internally for its web server, mail
gateway, database server, router, dial-in server and masquerading proxy
firewall.

HKS chose Linux as its primary operating system because it liked Linux's
versatility, flexibility, open-source code, hardware independence, platform
support and low cost. The low cost of Linux allows HKS to run on inexpensive
hardware, while compatibility with UNIX systems made Linux an ideal
development platform. Access to the Linux kernel source code, especially for
serial drivers, made Linux even more attractive. Linux's conformance to the
POSIX standard also makes porting to other systems very easy.

Supported Linux Platforms

HKS is committed to supporting as many versions of Linux as possible. This
includes distributions from Red Hat, SuSE, Debian, Caldera, Yellow Dog,
NetWinder and Cobalt. In addition to Linux, CCVS runs on a variety of other
operating systems including BSDI, AIX, FreeBSD, Digital UNIX, SCO OpenServer
and SPARC Solaris.

CCVS can be integrated into almost any application because of the wide variety
of languages supported. Developers can choose from C, Tcl, Perl5, Python, Java
and PHP3.

HKS customers agree that Linux makes good business sense. Approximately 70
to 80% of HKS customers are Linux users (followed by Solaris and FreeBSD
users). In fact, many customers choose CCVS because it is the only payment-
processing system designed to operate under Linux.

As the first company to develop a commercial credit-card processing system for
Linux, HKS is committed to the Open Source movement and plans to sponsor
various open-source projects.

HKS provides a downloadable demo of CCVS. Pricing starts at $995 for Linux or
OpenBSD and $1295 for commercial UNIX.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/068/3639s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3639s2.html

Craig Knudsen (cknudsen@radix.net) lives in Fairfax, VA and telecommutes full-
time as a web engineer for ePresence, Inc. of Red Bank, NJ. When he's not
working, he and his wife Kim relax with their two Yorkies, Buster and Baloo.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Guido van Rossum

Phil Hughes

Issue #68, December 1999

Phil and Guido stroll through the waterfront at Monterey and discuss Python.

From August 21 through 24, I attended the O'Reilly Open Source Software
Convention in Monterey, California. It was a great location, great weather and a
great conference. The first two days were tutorials, followed by two days of
conferences and the trade show. The show was generally excellent, with over
1600 attendees.

The conference was an outgrowth of a Perl conference, and it had tracks on
Linux, Apache, Python, Sendmail and Tcl/Tk, as well as the Perl track. This
variety of tracks afforded a great opportunity for the various open-source
software tribes to get to know each other.

I tried to play the field and attended a Samba tutorial in the Linux track, a
modperl tutorial in the Apache track, a Tcl/Tk introduction, and a Python tools
for XML programming tutorial.

During the two days of the conference, I spent some time in conferences,
including keynotes by Guy Kawasaki and Bill Joy, and some time at the Linux
Journal booth. As a whole, it was a great conference. Miguel de Iscaza, leader of
the GNOME project, summed it up by pointing out that, unlike other recent

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

shows, this really was a conference for developers by developers. From the
tutorials to the included lunches, good organization and good content were
evident everywhere. I look forward to attending the conference again next year.

With a large Python track, Guido von Rossum was, of course, in attendance. Our
scheduled 30-minute interview turned into an enjoyable three-and-one-half-
hour evening on the Monterey waterfront. The first part of the interview is
included here. After this interview, Guido went on to talk about CP4E, his
project to turn Python into the language used in colleges. That portion of our
interview is here: An Interview with Guido van Rossum.

Phil: Python vs. Perl? Obvious question. I heard last night that some Python
guys and Perl guys met, and now you are good buddies. Or actually John
Orwant said, “The Python guys are a lot nicer than the Perl guys.”

Guido: The funny thing is that while there is a lot of animosity in the lower
ranks, I've actually been very friendly with Larry Wall and Tom Christiansen ever
since we met five years ago at the VHLL symposium that Tom organized. Tom
really wanted me there and made sure I was among the invited speakers
describing one of the three major scripting languages.

Phil: What was the third?

Guido: Tcl. Well, maybe Python was the third!

Phil: I've been doing shell programming and AWK programming for close to 20
years and if somebody says, “Here, can you write this in Perl?” the answer is,
“Well, yeah I can,” and the reason I can is because I've got 20 years of
experience writing in all the pieces that make up Perl. But to go out and tell
somebody, “Oh, you are going to learn a new programming language and the
design of this language makes perfect sense” is an issue. I don't see how I can
do that with Perl, and yet I can do that with Python. That's the distinction for
me.

Guido: I think the core of the matter is that Perl has a very UNIX background
and claims to be portable. If you talk to people, they all think Windows stinks
and UNIX is the one true operating system.

Phil: I think that too!

Guido: Well, you better, given your choice of profession! That is a very typical
point of view you find a lot in the Perl world. There also seems to be a bit of
dislike for GUIs or anything that smells of user friendly. Part of the UNIX
community has that dislike. I grew up in a research environment where we
used UNIX; we were one of the earliest UNIX sites in Europe and one of the

https://secure2.linuxjournal.com/ljarchive/LJ/000/5028.html

earliest Internet sites in Europe as well. But we weren't so partial to UNIX. We
were interested in what came next. For a while, I considered myself a graphical-
user-interface designer—learned a lot about user interfaces.

Phil: What were you doing at the design end? Or what were you implementating
on?

Guido: Oh, the implementation varies—eleven X Window systems as well as
Macintosh. I almost never touched a Windows box until Windows 95. Because,
before that, any GUI programming was hell. Windows has grown up a lot. There
was actually an interesting Python on Windows, even with Windows 3.1. I think
that's where Mark Hammon started, actually.

Phil: You said you are not really using Linux right now. What are you using as a
platform?

Guido: At work, I have a very big Solaris box on my desk. At home, I have a
laptop fast enough and big enough to serve as a desktop machine, and it dual-
boots Windows 98 and Linux. I use Windows just for compatibility with many of
the people at work and for historical reasons, because we were using a lot of
Windows applications. I don't use Windows much for programming; the only
programming I do on Windows is—well, there are two kinds—little games
programmed in Python, toy applications for testing some idea where it doesn't
matter which platform I'm using, and maintenance for the Python port to
Windows. The Python port to Windows has two components to it—the core
part, which I manage, and the old Windows-specific additions, which Mark
Hammon manages. So people typically download two files, and they can get
both from http://www.python.org/. The first one is the standard Python
distribution which gives you a command-line interpreter, documentation and
the standard library—a bunch of goodies. And then, actually, I looked at a
bunch of statistics—one third of the people who download Windows installers
also download Mark Hammon's extensions.

Phil: What's the ratio of Windows users to UNIX users?

Guido: I don't know about actual users, but downloads from python.org are
something like two-thirds Windows and one-third UNIX. All sorts of
explanations for that, probably because the UNIX people can build from source.
One download may represent a larger number of users. With Windows, I
imagine one download often represents one user. Linux, at least, also has the
possibility of downloading RPMs from a different site—we don't have any
statistics for other sites.

Phil: Plus, Python comes with virtually every Linux distribution anyway.

http://www.python.org

Guido: Yeah, well, there are lots of complaints about that. They're not very up-
to-date and they don't have a very large set of standard extensions, so it takes a
little extra work to configure them at compile time. If you want the full Python
installation on your Red Hat Linux, for example, you want to download all of
Andre's stuff.

Phil: By the way, I actually do use Python. I've been telling people at the office,
“We've got to start programming in Python.” We went through a couple of Perl
programmers who could produce code extremely fast, but when they found
new jobs, we were sitting around going, “What is this stuff?”

Guido: That is one of the things I've always had as part of my philosophy: it's
much more important that you can read someone else's code than how fast
you can produce your own code. Again, that is something very few people in
the Perl community appreciate. I know Tom Christiansen does appreciate it. But
many of the people who are in the trenches doing Perl programming don't
have the time to learn how to write it right; they just copy the examples they
found in the legacy of the previous person who was hacking at that site.

Phil: Sometimes that's fine. I write a lot of disposable stuff in AWK. Here is some
data, I've got to turn it into something and load it—fine.

Guido: As long as you actually dispose of it!

Phil: Exactly!

Guido: My dad used to say there is nothing more permanent than a temporary
solution. A lot of disposable software ends up persisting beyond all reason.

That is actually one of the big differences between the Perl philosophy and the
Python philosophy. Perl gives you lots of different ways of doing things which
makes it much harder for the reader, because if you are writing code, you need
to know only what you know—you need to know only one way to do what you
want to do. But, if you are reading, you need to know everything before you can

actually read it. I mean, it's not so different from understanding a language like
English. My passive vocabulary, what I can understand when people speak to
me, is a lot larger than my active vocabulary—the words I can actually use
myself. Not growing up as a native speaker, my active vocabulary is smaller
than that of a typical native speaker. For the casual programmer, you have the
same situation where you know enough of the language to get by for your own
programming needs. But if someone else presents you with something he
wrote, he probably knows a different subset, and there is no agreement on
what the basic 600 words are that you both need to know to get by. It's often
quicker to run a program and see the results, then reproduce the code in an
idiom you know and start hacking on corrections, than it is to try to understand
how the code works and change that.

Phil: That's similar to what IBM did with PL/1, the ultimate language. If you went
into a company that had both FORTRAN and Cobol programmers and you said,
“You are all going to write in PL1,” then the Cobol programmers wrote Cobol in
PL/1 and the FORTRAN programmers wrote FORTRAN in PL/1!

Guido: And the Algol programmers wrote Algol in PL/1.

Phil: It seems like Python is starting to be taken really seriously in web
development and so on. Is Python being taken seriously in academia? I guess I
mean relative to Perl, because Perl isn't, as far as I can see.

Guido: I would say Python is being taken a lot more seriously. There are
language designers who don't approve of certain short cuts, or the fact that
Python doesn't have static typing, or the fact that there are other languages out
there that are as good as Python is, and again borrow all the good features
from those languages.

Phil: What languages?

Guido: Some people think, for instance, that Dylan—which I think has a very
academic flavor—is everything Python is plus so much more.

Phil: Dylan? I've never heard of it.

Guido: Well, that's exactly Dylan's problem. I don't know, but I think it started
out as a LISP variant, with sort of an alternative syntax. The syntax was
deliberately unLISPish in order not to scare off everyone who is not already
brainwashed with LISP, because LISP has one of the biggest image problems of
any programming language in the world.

Phil: I had to learn LISP in college, and I can appreciate that! Keypunching
parentheses is not my favorite thing.

Guido: I like a lot of the concepts of LISP, but I strongly disagree with their
approach to syntax, which happens to be the same approach Tcl has, more or
less. Which is, there is no syntax, or it's so simple you have to do everything
else outside the syntax.

Phil: Is Tcl making it at all in academia?

Guido: I am sort of removed from academia, so I don't quite know. I don't think
so. I mean, one or two people I spoke to recently from academia had a very
strong opinion that Python was a decent language and Perl and Tcl were not.

Phil: To me, the biggest thing lacking in Python is books. To learn the language,
basically, there are three books out there: the two O'Reilly books and the one
you wrote...

Guido: I didn't write that!

Phil: Okay, the book you didn't write!

Guido: Aaron Watters wrote it. I was originally supposed to write one chapter.
When I came back from vacation ready to write the chapter, they had changed
the deadline and already started printing! So I thought, hmmm, good! Until the
beginning of this year, there were clearly too few books. Right now, Learning
Python is by far my favorite Python book.

Phil: Hey! It's mine too!

Guido: Yeah. I think what we'll see is that several other publishers will start
publishing Python books. I mean, I've been talking to authors, and I actually
managed to piss one off because I didn't like the chapter he sent me. But
everyone else I'm fairly okay with. And the one I pissed off is going to continue
anyway, so more power to him. There will probably be five or six more books
by the end of the year. Mark Hammon and Andy Robinson have almost
completed another O'Reilly Python book, specifically for Windows users. Dave
Beazley, who is solidly in academia—an assistant professor at the University of
Chicago—has already finished writing and turned in the manuscript for a quick
Python book for the experienced programmer. It has all the information you
need to learn the language quickly and start using it. There is one big appendix
in the book which is almost the entire library reference manual. All the relevant
things are in the New Riders series. I think two different people are working on
Python books with Tkinter. There is another quick Python introduction, and
plans for something like an 800-page book with lots of annotated examples. So
there is lots of stuff coming out, and it's aimed at a much larger variety of users.

The first books that come out try to be everything for everyone, and that is kind
of hard.

Phil: I guess the big thing you are playing with now is JPython?

Guido: JPython is really big, but I'm not personally very involved, actually. One
of my well-respected colleagues at the CNRI (Corporation for National Research
Initiatives) is now doing the maintenance after Jim Hugunin (see http://
www.python.org/) and the original author have decided to move to the West
Coast.

Phil: JPython is a really neat thing. If Java actually becomes the success it wishes
to be ...

Guido: Java is a decent language, but it really needs a companion like Python. I
have to admit that was one of the things I was very skeptical about initially
when Jim Hugunin came up with the idea. I thought, “Oh, my! That is going to
be so slow! That's not going to be worth it.” It was a little slow, but not so slow
as to be unusable. I had to push Jim to add some psychological tricks to the way
the interpreter initializes itself. I think the current version quickly prints the
command line, the first prompt and then actually finishes initialization. This has
the advantage that during the second or so it takes you to type your first
command, the initialization finishes, so when you hit return, you have an
instant response.

Phil: I worked for a computer sciences department on the development of an
operating system in 1970 when everyone was using a teletype. We had a basic
interpreter, and when you typed run, the basic interpreter printed out the
name of the program and the current date and time. It did that to cover up the
fact that it was compiling it into byte code before it was going to run. Same
story, but you had a lot more time when you had about 50 characters to print
on a 10-character-per-second teletype.

http://www.python.org
http://www.python.org

Guido: Well, that kind of trick still works, but JPython is its own world. I think it is
the only language integrated with Java in this particular way, where you
basically have cross-language inheritance. You can inherit in Java from a Python
class and vice versa, and you can override methods in each direction. So the
people who use it, use it typically as an extension language for a large system
totally or almost totally written in Java, where they need to provide some end-
user program ability. I think one product, Object Domain, is an application that
is sort of UML for Java programs, and you can do all sorts of manipulations with
the UML objects. In a little corner of the screen is a Python prompt—when what
you can do with the menus doesn't give you enough flexibility, you can write
your own Python code right there and execute it. That is how JPython is used as
an extension language to Java. That is the equivalent of what people have been
doing with CPython in C or C++ applications all this time. But with Java, there
really weren't very many options like that, and Javascript hasn't made it outside
the embedded HTML world.

Phil: I haven't done much with Javascript.

Guido: It's actually a decent language. It doesn't have the whole object-oriented
kit and kaboodle Python has, and that's its big weakness. Actually, Javascript
and Python share a lot of syntactical ideas, and the dynamics of the language is
also more or less the same. It's probably purely coincidental.

Phil: In the near future, we will be developing some software that needs a local
user as well as a web-based human interface and a database back end. The
local user interface needs to be semi-graphical with minimal keystrokes. We are
considering using Python and a database such as MySQL or Postgres. Are we
on the right track, or are we crazy?

Guido: There are tons of options. I don't know if you've done any research yet
in that area, but I still like Tkinter best—it seems to be the most popular. It is
called the de facto standard. I like it because it is portable between Windows,
UNIX and Macintosh. I think the only other option that has those three
platforms is WX Windows, which is a big C++-based thing. It used to have a
Python port that was fairly poor; I think it's all been redone, and I hear it is
much better now. I've never used it myself, because I am so happy with Tk
interface. I've also seen other good things. Some of my colleagues have just
started playing with GTK, and it certainly looks very slick; the code is about as
clean as Tkinter code. Apparently, the GTK port for Python is actively being
maintained, unlike some other offerings. I think there is a KDE or a Qt port that
is not being maintained any longer.

Phil: The biggest problem we decided we had with most Tk documentation is
that it is attached to Tcl, which is the best way to confuse somebody who is
trying to write something else. I guess there is a book coming out.

Guido: There are already two books coming out—I have no idea when exactly,
so it may even be another year. I expect it to be a little earlier than that. In the
meantime, the best place to go for information is the HOWTO section, or there
is some kind of resource guide on the python.org site where Tkinter is actually
one of the topics which basically has pointers to all the other stuff you need to
know. The best documentation for Tkinter is the web pages Fredrick Lund put
together and had on his Python web site.

When we designed Tkinter, we were aware of the fact that we couldn't possibly
document it all. Certainly not document all the semantics. STK was changing
because when we started Tkinter, Tcl/Tk was at release 7.3 or so. We knew Tcl/
Tk was going to evolve, so we ported most parts. We set up a very regular
structure of mapping between Tk commands and Tkinter, mapped in classes.
So, you can prepare a small set of rules that say, if it looks like this in Tk, it looks
like this in Python. Along with that, there is a lot of information you can learn
from the standard Tcl/Tk documentation. Tcl/Tk has excellent man pages.
Whenever you are unsure what options to the grep command are or how to do
a button that has a particular property, look it up in the Tk documentation and
apply the mapping—sure enough, it works in the Python world.

Phil: That's cool. It's likely that's the way we will go.

Guido: Can I offer one piece of advice? I think one of the reasons for the
success of Python, Perl, Tcl, Linux and Apache is lots of extensibility. People can
scratch their own itch by writing their own little module that does what they
need to do so they don't have to bother the original developers with “Can you
please add this feature?,” the problem every sort of fixed system ends up with.

Phil: I agree completely. There are just too many pieces of software that were
written to solve somebody's problem but actually didn't solve it, where the
marketing department took care of explaining why it did solve it. There is a
company in Redmond that is really known for doing exactly that.

Guido: Their recent offerings are actually pretty extendable, but where they
aren't—that's when it's bad.

Phil: Is the Python community ready for a magazine?

Guido: Probably not yet.

Phil: That's what I told John Orwant about the Perl community, but he didn't
believe me!

Guido: Well, that's good! With this kind of stuff, I'm always happy to be proven
wrong. We tried an on-line magazine and there were one or two issues and that
was it.

Phil: Yeah, I saw it.

Guido: Realistically, the Python community is an order of magnitude smaller
than the Perl community. If you look at the number of Python people at this
conference vs. the whole thing, that's probably an order of magnitude plus a
factor of two maybe. So we need to grow.

Phil: The limiting factor in any magazine is advertising. When you buy a
subscription, that pays for the postal service to get the magazine to you. It's
advertising revenue that pays for producing the magazine. I feel like Python is
in a place where there really aren't any potential advertisers except book
publishers.

Guido: There aren't many people who have Python products. I mean, there are
a lot of people who have products that use Python in some corner of the
product. There are also lots of people who use Python but don't sell Python
stuff directly. I don't know if you know it, but Industrial Light and Magic uses
Python. Yahoo! bought a small company called 411, which had one of the
earlier more successful web-mail applications that, not incidentally, was written
in Python. Actually, I think that has happened at least twice now. I know two
almost-identical cases where a small, start-up company used Python very
quickly to prototype and release a product that is first of its kind. They were the
first to market it, and they were so successful they were bought by a large
organization, looking for a product in that area, whose efforts haven't paid off
just yet. Once it gets absorbed into that big company, what usually happens is it
gets rewritten in C++. That's what's happening with Yahoo! Mail, mainly
because they have, after maybe two years of experience, settled on the course
of the features. Now they are interested in dealing with the 80,000 subscribers
they get every week or every day or so. They buy new hardware too, but you
need to use that new hardware efficiently, so they rewrite the stuff in C++. If
anyone had started writing that stuff from scratch in C++, he would never have
gotten the product out!

Phil: They'd still be writing it!

Guido: Exactly! And because during the initial three months or so of figuring out
exactly what you want, you rewrite the thing so many times and that's where
you really need the very high-level dynamic range.

Phil: How common is that, that people are prototyping in Python and rewriting
it in C++ or some other semi-reasonable language?

Guido: I'd say it's common for the things that become a blatant success. Lots of
places end up not bothering doing the rewrite in C++, even though they always
have that as part of their strategy, because the prototype works well, and
performance isn't the problem in many cases.

Phil: Certainly over the years, we have addressed performance by making
cheaper hardware that's faster.

Guido: Such a lovely development!

Phil: I remember UCSD P system, and other than Pascal, it isn't exactly the
savior of world language. If UCSD P system had appeared with the speed of
today's hardware, it would have been an amazing success because nobody
would have cared. It would have solved the problem.

Guido: I manage to follow only a very small piece of the general free software
world. But I am often amazed to see people post a small C program—maybe a
thousand lines—that they spent a lot of time on and that does a job well. And I
think, “My God! Why did they bother writing it in C? What's the performance
need here?” If this is something to manage your calendar, for example, why
would you bother writing that in C?

Phil: Well, that's all I have to pick on you about. Thanks for taking the time to
talk to me.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Free Clues from Eric

Doc Searls

Issue #68, December 1999

Doc talks to Eric Raymond about what he has been up to lately.

In mid-October, Eric S. Raymond's book The Cathedral and the Bazaar came out
from O'Reilly & Associates. It contains updated versions not only of Eric's
landmark title essay, but also both companion pieces, “Homesteading the
Noösphere” and “The Magic Cauldron”.

We thought it would be a good idea to interview Eric about the new material in
his book—and, since this historian of the hacker tribe never stops thinking, to
glean a few of the ideas which have evolved out of his brain since finishing it.
This conversation took place on September 22, 1999.

Doc: So now that we have “The Magic Cauldron” in final form, what new ideas
are you working on?

Eric: A couple. I'm further developing the critique of conventional software-
development management that I outline in the new last section of “The
Cathedral and the Bazaar”. Also, I'm noticing some interesting developments in
the business ecology of Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Doc: Let's take the development management idea first.

Eric: I've been developing my thoughts about play being the most efficient form
of work. Let's start by asking a basic question: What are the circumstances that
make a programmer productive?

A programmer is productive when he is neither under-challenged nor over-
challenged—neither bored and underutilized at one end of the scale, nor
burdened with artificial deadlines and technical and procedural hassles at the
other end. When the programmer's skill and energy are well-matched to the
task, that's when you'll see the maximum productivity. The interesting insight is
that these are also exactly the circumstances under which the programmer will
be happiest, when his enjoyment in writing good code is maximized.

So in order to get the maximum economic leverage out of the guys you hire,
you need to reduce friction costs at the top end, because you'd rather pay for
their code than their grief. On the other hand, you don't want them to be bored
—because when they're bored, you're not extracting maximum value from
their ability.

The general prediction is this: enjoyment predicts efficiency—and not just in
some fuzzy New-Agey way, but in a hard-nosed economic sense.

If you use your developers the most efficient way you can in creative work, they
will be happy. On the other hand, if you have a development management style
or an institutional tradition under which your developers are bored, frustrated
and angry all the time, you are failing. And not just humanistically, but
economically. You are failing to extract maximum productive value out of your
people.

Doc: You have Dilbert's work environment.

Eric: Right. If you look at traditional software development management, you'll
find that of the five classic tasks of the manager, maybe four just don't apply at
all in an Internet environment. It's not so much that the traditional assumptions
are wrong in some deep sense, but they're irrelevant: they proceed from
assumptions that no longer match the problem. Because the assumptions
don't match the problem, we've got an impedance mismatch: a lot of bored,
frustrated, angry and unproductive programmers out there.

Now there is a popular “burger-flipper” school of management that says this
kind of unhappiness in production workers doesn't matter as long as they're
still cranking out a minimally acceptable product on the right deadlines. In fact,
some managers just sort of gut-level assume that people aren't working hard

enough unless they're stressed out, so they figure the right thing to do is apply
the whip every once in a while just on general principles. This is the thinking
behind artificial deadlines—it's the Simon Legree theory of motivation.

But a funny thing happened on the way to the plantation—the overseers
themselves are revolting. Managers are increasingly frustrated, because they're
doing all the supposedly “right” things, and their jobs and their results still suck.
The days that only engineers griped about this stuff are long past. Today,
Dilbert cartoons hang in executives' cubicles.

Think about that. If the system was working, would the managers display
contempt for it?

Doc: Tom Peters has observed that the best-selling business books are his and
Scott Adams'. And he laments that all those Dilbert books are relentlessly
cynical.

Eric: I'm totally with Peters on that one. When I speak to CEOs and investment
bankers, I try to wake them up to the fact that the popularity of the Adams
books all the way up the management chain is actually not funny. It means the
system is broken. If we're going to fix it, if we're going to get our productivity to
where it ought to be, we've got to start thinking humanistically about what
makes people happy at work. We've got to banish the Dilbert syndrome.

Doc: What about this ecology thing?

Eric: What I'm noticing lately is that Red Hat has developed a couple of satellite
distributions that are significant in their own right. One of these is Kevin Fenzi's
Red Hat Über Distribution (KRUD)—which I am now running on my own
machine, by the way. The other is Mandrake.

Doc: These are cases where others are leveraging Red Hat.

Eric: Right. Both looked at the Red Hat distribution and said, “I see a significant
value-add here that Red Hat is either not interested in or not in a position to
exploit.”

In the case of KRUD, Red Hat doesn't put out updates often enough. So what
Kevin does is press CD-ROMs every month on a subscription basis. A new one
shows up in the mail, you stick it in your drive, go through the update
procedure that pulls all the new RPMs off the CD-ROM and installs them, and
you are completely up to date.

I think of this as the magazine model of operating system publishing. Want all
the latest updates? Subscribe—it's just $36 a year. In return, you don't have to
spend a lot of time downloading stuff and worrying if you're current.

Doc: Who's the customer?

Eric: KRUD is particularly valuable if you are a site with serious security
requirements. Want to be sure you have all the latest security patches? That's
what Kevin does for you. He's the maintainer of the Linux Security HOWTO.
He's at http://www.tummy.com/, by the way.

Doc: Why can't Red Hat do this?

Eric: Scale, I think. They have to ship CD-ROMs in sufficiently large runs to carry
their other expenses. They would be bleeding all over the place in fulfillment
and marketing expenses if they tried to compete in this new space by going to a
one-month rather than a six-month release cycle.

Doc: Red Hat only scales higher up the value chain.

Eric: Right. Kevin can do this because it's a relatively small effort for him, and he
doesn't carry all of Red Hat's development and marketing overhead.

Doc: What about Mandrake?

Eric: Their value-add is that most people have Pentiums now, and Mandrake
can take all the source RPMs and recompile them with Pentium optimization so
your machine runs 30% faster. Again, it would be too expensive for Red Hat to
have two distributions, one optimized and one not.

Doc: Does Red Hat benefit here?

Eric: Sure. Red Hat is certainly growing their support market this way. If I'm a
Fortune 500 site and I have a subscription to KRUD and have a support
requirement, do I go back to Kevin? No, because I know he's just one guy sitting
in a room in Colorado somewhere. So I go back and buy a support contract
from Red Hat.

Doc: And if you're in the same position with Mandrake?

Eric: You may go to LinuxCare. I believe they're Mandrake's partner for service.
So the Mandrake/LinuxCare combination is competing with Red Hat a little
more directly for service revenue. Still, the Mandrake guys have a good working
relationship with the Red Hat guys. In effect, Mandrake is acting as an R&D arm

http://www.tummy.com

for Red Hat, because the changes they make, to fix and clean up things, can get
folded back into future Red Hat distributions.

Doc: And the ecology point?

Eric: Because everybody is playing by the open-source rules rather than
competition, there's a potential for cooperation to make more money. There is
a potential for single distributions to speciate into mini-ecologies of mutually
supporting distribution variants. These guys all share core DNA, and that's what
makes the ecology work.

Doc: I imagine there is some analog in original markets.

Eric: Oh, sure, it's a value network in Christensen's sense. [Clayton Christensen
is the author of The Innovator's Dilemma, an award-winning book on disruptive
change in technology markets—Editor]

Doc: Have you got any more books in the pipeline?

Eric: Yes. I'm about halfway through writing the first draft of The Art of UNIX
Programming, a book on how to think like a UNIX guru. It's aimed at a lot of the
younger Linux programmers who have picked up bits and pieces of the UNIX
design tradition, but don't really have the whole Zen. This is not their fault—
because like Zen, it's only been passed along from master to student up to now
—“a special transmission, outside the scriptures”. It's time to write it down.

Doc: Any other significant developments for you?

Eric: I'm doing most of my programming in Python these days. I've moved away
from C.

Doc: Python is hot. It's taking our own people by storm.

Eric: Under present economic conditions, using a language in which manual
memory management is required almost never makes sense. The thing about C
is that you have to manage your buffers and dynamic storage by yourself. You
don't have a garbage-collecting interpreter doing it for you. It's a huge source of
problems—classically, something like nine out of ten of the runtime errors in C
programs are memory-management screwups.

It used to be, back when machines were more expensive and programmer time
less so, that it was worth hand-tuning resource utilization and putting in all the
debugging time necessary to compensate for the high error rate. But unless
you're doing systems programming or really heavy-duty number crunching,

that tradeoff just doesn't make sense any more—not with cycles and memory
as cheap as they are now.

Doc: Is that Python's main virtue for you?

Eric: One of several, but in my opinion it is the single most important one.

Doc: But other languages do the same thing.

Eric: Yes, there are lots of interpretive languages that do garbage collection, but
very few are as well-designed as Python. The alternatives don't scale well; they
make it harder to read and modify large volumes of code. I used to write a lot
of Perl, until it got too painful. And the less said about Tcl, the better.

Doc: Closing thoughts?

Eric: Just a sound-bite version of what's beneath most of the open-source
business models we're seeing out there. “Linux is free. Clues are not.”

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Product Review: Diffpack

Jim Moore

Issue #68, December 1999

Diffpack is an object-oriented toolkit for creating numerical analysis
applications. It provides high-level building blocks which may be put together to
rapidly create a high-quality application for solving partial differential
equations.

Diffpack

• Manufacturer: Numerical Objects AS
• E-mail: sales@nobjects.com
• URL: http://www.nobjects.com/
• Price: Varies according to license (see below)
• Reviewer: Jim Moore

Diffpack is an object-oriented toolkit for creating numerical analysis
applications. It provides high-level building blocks which may be put together to
rapidly create a high-quality application for solving partial differential
equations. The software package has an accompanying book, Computational

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.nobjects.com

Partial Differential Equations (CPDE) by Hans Petter Langtangen (Springer-
Verlag).

I must admit I was immediately impressed with the book because it was typeset
with TeX by the author, and as any TeX user will tell you, using it is a sign of
intelligence. The book is well made and beautifully set. It is written in a style
very similar to The Visualization Toolkit by William Schroeder, et al. (Prentice
Hall Computer Books) in which a careful description of the approach and
methodology for building numerical algorithms for solving partial differential
equations (PDEs) is given, with all the examples being demonstrations of the
Diffpack software.

CPDE begins with a strong and well-supported endorsement of object-oriented
programming. It then proceeds to describe PDEs of increasing complexity and
numerical approaches which can deal with them. The book explains the
difficulties of the mathematics as well as the intricacies involved when the PDEs
are “linearized” into systems of algebraic equations and solved in various ways.
Techniques for performance optimization are also covered. With each level of
complexity, relevant sample problems are solved using the Diffpack software to
demonstrate how the problem can be solved. CPDE focuses more on the finite
element method than the finite difference method, probably due to the
author's experience, but gives sufficient coverage to both.

The main chapter topics accurately describe the content of the book:

• 1. Getting Started
• 2. Introduction to Finite Element Discretization
• 3. Programming of Finite Element Solvers
• 4. Nonlinear Problems
• 5. Solid Mechanics Applications
• 6. Fluid Mechanics Applications
• 7. Coupled Problems
• Appendix A. Mathematical Topics
• Appendix B. Diffpack Topics
• Appendix C. Iterative Methods for Sparse Linear Systems
• Appendix D. Software Tools for Solving Linear Systems

There are 127 exercises to help a student of numerical methods deepen her
understanding of the topic. The demonstrations make wide use of tools
commonly available on Linux systems such as Gnuplot, Plotmtv, Matlab, Vtk
and Xmgr. The scientific Linux user will feel very much “at home” reading this
text. My usual complaint for technical books is that they either go too far with

examples and don't provide enough background, or they do the opposite and
go too far with theory and leave the reader with no concrete way to apply it. In
my opinion, this book has struck the balance well. I wholeheartedly
recommend it as a general text on the topic. If you plan to use Diffpack, it is a
requirement.

Platforms

Diffpack is available for all major UNIX flavors and the Win32 platform. I tested
the software only on Linux. There are four types of licenses: Commercial
Developer, Non-Profit Developer, University Developer and University
Classroom. They initially cost $9995 US, $3150 US, $995 US and $1995 US,
respectively. The classroom license allows five concurrent users. Annual service
contracts cost roughly 13.5% per license and additional licenses cost less than
the initial license. There is an additional fee for multi-license, multi-platform
support as well. For further price information, contact Numerical Objects AS
directly.

Though I did not test it, a plug-in called the Adaptivity Toolbox is available which
enables any application to implement adaptive grid technology. It comes at an
additional price ranging from $995 US to $3150 US depending on the type of
license. This tool is essential for some applications and should be added
directly as part of the cost of the purchase price. If your problem involves
changes of scale of an order of magnitude or more, you will probably need this
tool.

Installation

I installed the software on my Red Hat 6.0 Dual Pentium-II system from the
demo CD-ROM, which may be ordered directly from Numerical Objects at
http://www.nobjects.com/. The instructions were complete and the installation
process was as simple as running a script, setting two environment variables
and making a one-character change in a Makefile to reflect the name of the
compiler on my system. However, if you happen to have a version of egcs

newer than 1.0.3 and no longer have 1.0.3 lying around, I have two words for
you—forget it. Diffpack must have egcs 1.0.3, and if you have a newer version,
there is no way to compile applications with it. I ended up NFS-mounting the
diffpack distribution on an older computer I hadn't gotten around to upgrading,
so that I could get the examples to compile. This is not Diffpack's fault, but a
show-stopper nevertheless.

The CD contains over 50 demonstration applications which directly correlate
with the book. The CD-ROM has very well-structured HTML documentation
which explains each demo and extracts them from the CD via a link. Each
example is structured exactly alike, with source code, a Makefile and a README

http://www.nobjects.com

that explain how to build and run the example. All examples have a “Verify”
directory which contains input files for verification simulations. The examples
are usually designed with some sort of progression in mind, walking the user
through the various capabilities of Diffpack and the helper applications which
accompany it. Some applications require the licensed version of the code to
run, but the CD provides pre-built executables for some of these. You will also
need Perl-Tk to run any of the graphical interfaces to diffpack applications. My
Perl-Tk is not current enough, so I didn't have the pleasure.

After working through the installation and application compilation process, it is
clear that Diffpack is exceptionally well-designed. Quite a bit of thought has
gone into making the installation process work well on any supported platform.
The software installs simply, but still gives the user complete control over how
the installation is done. Want to change (supported) compilers? No problem.
Want to use VTK for visualization? No problem. It takes a little reading to make
these things happen, but it is usually as simple as altering an environmental
variable or setting an option argument for make.

The Good

• Excellent book
• Powerful software
• Well-written
• Well-documented

The Bad

• Extremely particular about libraries and egcs versions
• Steep learning curve

Usage

Diffpack is like a fractal pattern viewed from a distance: looks simple and is
simple, and the closer you look, the more there is to see. Again, unless you are
running Red Hat 5.2 or a similarly time-stamped Linux distribution, your efforts
will most likely fail. The applications may compile, but will dump core because
you have an older f2c library, for example. Though my efforts failed, Numerical
Objects reported to me that users of the Red Hat 6.0 distribution have
successfully run Diffpack, so don't lose heart if you already made the change. It
will just involve a little more work. Once you have the correct installation base
—watch out!

I compiled and and ran examples from each of the sample directories: fem,
fdm, linalg and app. The examples cover everything from “Hello World” to the

wave equation to coupled heat and momentum transfer. The first, Heat2, from
the fem series, gave me chill bumps. It was a simple 2-D transient Fourier heat
conduction problem. I compiled the application (make MODE=opt), ran it (./
test4.sh), ran LaTeX on one of the output files, and saw a complete report of
the simulation: input conditions, routines called, solution history and graphical
results. The report was also generated in text and HTML format. The input file
was about 20 lines long and set up the grid (rectilinear), boundary conditions
and run controls. The shell script which managed the application contained two
lines. The application code was only 350 lines of C++ and most of that was for
managing a text menu system built into the application. A bare-bones
application of this type would probably have required about 30 lines of code.

The true advantage shows up when you want to change something, like solvers.
Change one line, recompile, and you are done. This package effectively
removes the tedium from building numerical solvers and allows the numerical
scientist to deal with the problem at hand: getting a solution or proving there
isn't one.

Some time will have be spent with the documentation to understand how to
build applications, but once done, I suspect there is little you cannot do with
this package in the field of numerical modeling. The package follows the UNIX
paradigm of making many small utilities which may be combined to create the
result you want. For example, results are presentable in so many formats
because of helper applications such as simres2gnuplot and several other
simres2* applications. Freedom and extensibility appear to reign supreme.

Of course, with freedom comes responsibility and a learning curve. Diffpack
provides C++ classes which may be used to build applications. The classes are
very high level, so you can call things like “GridFE” or “ConjGradNonLin” to deal
with finite element grids or a conjugate gradient solver, respectively. The
example programs are a very instructive aid to developers who want to build
applications with Diffpack. I would liken the experience to learning to use VTK.
However, because I am a numerical modeler and not knowledgeable in C++
matters, I can't report on the difficulty of building an application. I can report
that pre-built applications are relatively short, easy to read and understand.
With the book to aid you, it should not be too hard to become proficient if you
already understand numerical methods. Because the package was built with an
object model, fine control of the high-level classes is possible through sub-
classes.

As with most software, you don't realize its shortcomings until you are very
heavily invested in it. I don't know if it is possible to exercise fine control on
mesh topologies during a simulation or vary convergence criteria by node
location, for example. Most numerical simulations packages invoke heuristic

“tricks” to get the job done on difficult problems. The diffpack implementation
appears to be quite pure, and it may be difficult to get away with some tricks
that practitioners of the “art” are familiar with. On the other hand, because it is
pure, it may be the first opportunity to solve many of the problems engineers
have cheated on for years. Interface tracking comes to mind.

Diffpack appears to be a well-written, well-documented tool which does exactly
what its own press suggests: “Closing the Gap”. Perhaps “filling” is a more
appropriate term, because this stuff is as hard as it ever was, and the “gap”
between understanding a physical phenomenon and finding a reliable
computational solution is large. This tool makes the gap easier to span.

Jim Moore and his wife Kim simultaneously work to transform two little urchin
daughters into respectable and productive human beings and be productive
and respectable themselves. They are coming to believe the two goals are
mutually exclusive. Jim is developing distributed, object-based, numerical
software for his startup, URS Technologies, LLC in Columbus, OH. He has a
BSME from UT Austin, and a Ph.D in metallurgical engineering from Ohio State.
He may be reached at jmoore@qn.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jmoore@qn.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Castlewood ORB

Patrick Lambert

Issue #68, December 1999

The ORB is both inexpensive and contains a good amount of data (2.2GB per
disk, which can compress up to 6GB).

• Manufacturer: Castlewood Systems Inc.
• E-mail: castlewood@castlewood.com
• URL: http://www.castlewood.com/
• Price: $199 US for drive $29.95 US per disk
• Reviewer: Patrick Lambert

In the past few years, I have bought a lot of hard drives for various reasons.
From testing to storing Internet downloads and archiving, I always needed
more disk space. When I began looking at the available removable media
devices, I wasn't impressed. Most contained only a few hundred megabytes and
were very expensive. Then I came across the ORB. The ORB is both inexpensive
and contains a good amount of data (2.2GB per disk, which can compress up to
6GB). A month later, I was buying a parallel port ORB device and two disks.

Device Information

The Castlewood ORB is a device capable of supporting removable disks
containing 2.2GB of data. The ORB comes in several versions:

• Internal IDE
• Internal SCSI

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.castlewood.com

• External SCSI
• External Parallel

The ORB is advertised as a good way to store important data, have portable
information, store digital images and other media, back up a hard disk and
store Internet downloads. The manual specifies that a Pentium 100 or better
system is required.

Hardware

I bought the ORB from one of the on-line resellers and received it in less than a
week. The ORB box is quite large and contains the ORB drive, a disk full of
utilities, an interface cable, a power supply, a user manual and an installation
floppy. The drive is nice and looks modern on a desk. It is black with a small
door for the disk on the front. The ORB power supply is like any other power
supply, appearing very common. The interface cable is very short (about two
feet), and you cannot use a normal printer cable to link the drive to the PC. The
drive has an output port to connect a printer. The manual recommends that no
other parallel device be used with the ORB and the printer.

One thing I found out is that even if they include a removable disk in the
package, you actually need to buy another one since the included disk has
1.6GB of tools on it.

Included Software

The installation floppy contains drivers for various systems, including Windows
98, Windows 3.x and DOS. The included media has the following Windows
tools:

• ORB Tools: a set of tools and utilities used to manage the drive, eject a
disk, scan the drive and other similar functions.

• 1-Click Backup: a full system backup can be done with this utility by right
clicking on the ORB's drive letter.

• Advanced Backup: this full suite of backup tools is for professional users.
• Duplicator: this tool allows you to duplicate multiple ORB disks.
• tracker: tracks your files on all your disks.
• Rescue: this small utility lets you restore your boot drive in emergency

situations.

The disks come formatted in FAT16, which is readable and writable by Linux,
DOS and Windows. They can be partitioned and re-formatted like normal hard
disks.

Windows Installation

The installation in Windows was very easy. When inserting the driver's floppy,
you can install the drive in less than 30 seconds. The ORB device will then
appear as a drive letter, seen from Windows as a removable hard disk.
Installing the tools provides all kinds of interesting functions, including backups
and a software-based eject button.

One thing I noticed is that when the RealPlayer is running and I insert a disk in
the drive, then try to access it from Windows Explorer, it hangs the system. This
may be a bug in the ORB driver, the RealPlayer or both.

The Good

• Inexpensive
• Easy to use
• Large storage size
• Lots of software
• Works with Linux, OS/2, DOS and Windows

The Bad

• Unreponsive when writing large files
• Much slower than an IDE drive

Linux Installation

The Linux installation was also easy. The ORB device acts like an OnSpec device,
which is supported by Linux. Here is a quick installation guide, followed by the
steps.

/sbin/modprobe paride
/sbin/modprobe on26
/sbin/modprobe pd
mknod /dev/pda5 b 45 5
mount -tmsdos /dev/pda5 /mnt/orb

The first step is to load the necessary modules. Three modules are required,
and unless you link them in your kernel, you need to load them when you boot
up. The first module is paride, the parallel driver which handles IDE devices.
The second is the OnSpec26 driver, which should find the drive. The pd module
should load the disk.

Once the drive and disk are found, you need to mount the disk. By default, the
media is formatted as an extended FAT16 partition. The first four partitions in a
Linux file system are “primary”; number five and up are called “extended”. This
means you need to create a device named pda5. The mknod command will do

just that. The mount command will mount the partition in /mnt/orb, assuming
you have created that directory.

If you have problems mounting the drive, you may want to look in your syslog
files. These should contain report messages from the module's loading and tell
you what is wrong.

Performance

The first time I used it, I noticed how silent it was. You can't even hear it write to
the disk. When you first insert a disk, you hear the same sound as when you
boot a system, and the BIOS loads the hard drive. When the disk is loaded, you
can mount it and read/write directly to the disk.

I noticed two problems when working with the ORB. First, when the system has
large files to write to a removable ORB media, it becomes very occupied and
unresponsive during the time it is writing to the disk. I am assuming this is
because it has to write via the parallel port, and the system needs to send the
data at a fixed speed and compression.

The other thing I noticed is the speed, which while better than every other
removable media I have tried in the past, is still not as good as an internal IDE
drive. The 2MB/sec advertised is the burst speed. I found the write speed to be
around 100 to 200KB/sec, transmitting around 10MB in a minute.

Conclusion

With its low cost, ease of use and included software, the ORB is a good product
to buy. Now I use it to do all of my local backups and store important archive
files which I may need in the future, such as Netscape Communicator and Word
Perfect 8.

I think the Castlewood ORB is the best removable media yet, and it is great that
it works in most popular operating systems including Windows, OS/2, DOS and
Linux. I would like to see Castlewood provide formal support for Linux and their
web site advertise the fact that ORB works on Linux.

Patrick Lambert is currently a student in Computer Science at the University of
Montréal. He has been using various UNIX and Linux systems for five years,

doing software development and systems administration. He can be reached at
drow@darkelf.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

MailStudio 2000

Jason Kroll

Issue #68, December 1999

MailStudio 2000 is a web-based e-mail server from 3R Soft for Linux, Solaris, HP
and DEC that provides web-based e-mail service for users.

• Manufacturer: 3R Soft, Inc.
• E-mail: sales@3rsoft.com
• URL: http://www.3rsoft.com/
• Price: starts at $299 US for 30 users
• Reviewer: Jason Kroll

E-mail changed the way we communicate, and now the Web has changed the
way we e-mail. Web-based e-mail has numerous advantages over traditional e-
mail: access from any web terminal, no need for e-mail client software (such as
Pine, Elm or Mutt) and multi-platform support (users have the same interface
on Linux as on any other platform). MailStudio 2000 is a web-based e-mail
server from 3R Soft for Linux, Solaris, HP and DEC that provides web-based e-
mail service for users. It is accessible through web browsers such as Netscape
and also through POP3-based mail programs such as Eudora. It can even be
implemented on top of existing POP3 servers to provide a local interface.
Unlike many web-based e-mail servers, MailStudio 2000 apparently aims to be
a quality, functionality-oriented e-mail utility, rather than a commercial excuse
for running advertisements (though you can, if you must, put ads on MailStudio

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.3rsoft.com

2000). Three main elements of a web-based e-mail server are its interface to
the users, its interface to the administrator and the technical features of the
server.

The User Interface

The uniform user interface offers a number of traditional e-mail features, such
as mailboxes and address books, as well as some things which are quite
modern (or even trendy), such as the ability to send e-mail as HTML with italics
and graphics and all of that bother. (This tends to annoy people, actually.) By
default, MailStudio keeps Inbox, Sent and Trash folders, and you can apparently
add as many as you like, which will be kept in the user's folder menu. The
Options folder contains entries for changing your preferences, folders, external
mail configuration (for POP3 servers), address book, signature, user
information and password. There is also a Question & Answer board for the
system and a User Search function for finding others. The last option is “Log
off” which kills the encrypted cookies used for user authentication.

The Good

• fast
• extremely easy
• flexible
• it works

The Bad

• a bit pricy
• somewhat insecure
• flickers

In order to use MailStudio 2000, a user must have Java and cookies enabled. In
addition, it seems to take a while to load, with a lot of flickering during initial
contact. The software is constantly being developed, so maybe this flickering
will go away soon. Everything else is simple, like any other mailer. People who
don't like command lines, vi, or typing in general will like this entirely graphical
user interface. MailStudio 2000 used to have multi-layer folders and address
books, which I think is a neat idea, but they eliminated multi-layers because
they weren't entirely cooperative with frames.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3702f2.large.jpg

Figure 1. A Picture of the User Interface

The Administrator Interface

From an administrator's viewpoint, MailStudio 2000 has a number of good
qualities. Installation is easy, and should take no more than a few minutes.
Likewise, starting and stopping the server is quite simple with start and stop.
Administrators can change the user interface just by changing the HTML files,
making all sorts of customization possible, as well as advertisements if you
really want them. (Well, it wouldn't be the Web without ads.) The client/server
model of MailStudio is based on open standards, so it integrates easily with
other software. As an example, user database and mail files can be
automatically backed up by cron; the manual gives the cron entries for doing
this. For normal management of these user database and mail files,
MailStudio's intended interface is a web based menu which is accessed by
logging in as sysop. The interface provides menus for user management,
application, admission and admin's (system) preferences. Of these, the
administrator's preferences menu has the important, system-wide, technical
parameters.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3702f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3702f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3702f2.large.jpg

Figure 2. Administrative Interface

Technical Features

The server has a number of functions and features to help it deal with the
complicated issues which arise in something seemingly as simple as web-mail.
Not all mail is processed following the same protocol, so in addition to the
standard Sendmail and SMTP, MailStudio is also able to support POP servers
and retrieve mail from them.

Security, such as it is, is achieved by way of cookies, which are encrypted with
MD5, and customers can order SSL services as well. The server supports
numerous standards such as MIME (Multipurpose Internet Mail Extensions),
multipurpose and dynamic HTML, ISO2022, Quoted Printable, BASE 64,
uuencode, two-byte character sets and multiple-language environments.
Embedded in the system is the CodeBase 6.3 database for dealing with all the
data.

Overall, the server is flexible, adaptable and generally cooperative. For
example, you can assign MailStudio to a specific port in order to avoid conflicts
with a web site you are already running, and you can implement virtual mail
hosts to achieve multi-domain support. In terms of resource consumption,
MailStudio allegedly can support over one million users and can deliver fast

https://secure2.linuxjournal.com/ljarchive/LJ/068/3702f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3702f2.large.jpg

service even during heavy loads. (I could not exactly verify this point, so we'll
have to take their word for it.) The system is self-contained, with safeguards,
simple methods and standard error procedures, and requires very little
maintenance.

Security

Holistically speaking, the problem with networks is security. Every packet of
information usually travels through several machines, and all it takes is a
packet sniffer at any point along the way and your data can be intercepted. This
is a reason not to send unencrypted credit-card information over the Internet.
(This is also why we want the U.S. government to allow stronger encryption.)
However, when it comes to dealing with sending passwords over the Internet,
it's a complicated problem to fix. For this reason, web-based e-mail has always
been vulnerable to security breaches, whether through accessing a page
directly to bypass login or through packet sniffers routing out people's
passwords. Cookies have largely put an end to the former problem, but the
latter is still with us. Fortunately, crackers (as Eric Raymond likes to call them)
don't have too much interest in reading other people's web-based e-mail. Still,
at login, your user name and password are sent unencrypted across the
network to the MailStudio server, as are the e-mail messages you send and
receive. Although this is the same situation as with TELNET or almost anything
else, it's not safe and something must be done (hence secure shells). 3R says it
can purchase and implement an SSL package from a third party and integrate it
into MailStudio in order to have encrypted first-pass user name and password
data. I think 3R should just write SSL into MailStudio since it is, after all, an open
protocol. Maybe it'll show up in a later version; I certainly hope so. If systems
were secure in the first place, fewer curious people would be in prison, and
script kiddies wouldn't seem so annoying.

MailStudio of the Future

Even though it seems like a simple task, implementing a web-based e-mail
server is complicated due to the numerous protocols, standards and platforms.
Because of this, 3R concentrated on performing one task simply and doing it
well. Much effort was put into making this software run easily, and I think it is a
success. I'm not a web type (three cheers for Lynx), and I managed to have it up
and running in less than ten minutes.

One strange quality of MailStudio 2000 is that the advertisement 3R sent with it
didn't exactly correspond with the features on the server. The reason?
MailStudio is still being improved. Now that the base product exists with
everything working, 3R can concentrate on improving the features, such as
search routines or user management. I have been told by 3R that their later
releases will have all sorts of neat things. An on-line demo at http://

http://www.mailstudio.com

www.mailstudio.com/ shows the system and demonstrates the current
features.

I was definitely impressed with MailStudio 2000's ease of use. While I am
concerned about the insecure first pass of user name and password, and the
flickering during the first screen load, it seems to be quite resource-minimal.
One strange thing I noticed is that all e-mail I receive from MailStudio comes
with paragraphs formatted as single lines, which is a bit weird. Still, with web-
based products so easy to use, it's not hard to understand how the Web has
become so immensely popular and populated. MailStudio is more expensive
than I'd like (which means it costs more than Apache), but I suppose if you have
the resources to run a web site, perhaps you can afford the price—still, ouch.

MailStudio 2000 is targeted not only at free e-mail providers but at educational
and commercial organizations, Internet service providers and government and
public institutions. It received five Golden Penguins from TUCOWS and is listed
as a Sun Microsystems software solution. You can download a trial version
(which supports five users or so) from http://www.3rsoft.com/. It is Y2K
compliant (well, wouldn't it be fun to have a product named MailStudio 2000
that wasn't Y2K compatible?) and it just so happens I'm running it successfully
from a VArStation in which the BIOS clock thinks it's the year 2036 (though
server problems will arise in 2038). If you're looking for a web-based e-mail
server for your Linux box, definitely take a look at MailStudio. It's already very
neat, and I'm told the next version will be a total web-based e-mail solution.

Jason Kroll (info@linuxjournal.com) came to Linux from the world of
Commodore 64 and Amiga where he grew up—he likes GNU/Linux so well he's
not going back. He has been spotted on the streets of Silicon Seattle handing
out Linux CDs to passers-by.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.mailstudio.com
http://www.3rsoft.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Developing Linux Applications with GTK+ and GDK

Michael Hammel

Issue #68, December 1999

Although not meant for the experienced user, this book does have its high
points, even for the old hands of GTK+ like me.

• Author: Eric Harlow
• Publisher: New Riders
• URL: http://www.newriders.com/
• Price: $27.99 US
• ISBN: 0-7357-0021-4
• Reviewer: Michael J. Hammel

I've been working with GTK+ since its early introduction with the GIMP several
years ago. I've watched it mature and become a fairly sophisticated widget set
—one of the best I've seen for use under X. Until recently, GTK+ could be
mastered only by those willing to dig into the source code, a feat not always for
the faint of eyes and fingers.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.newriders.com

Fortunately, the first of what I'm sure will be many texts on GTK+ has already
hit the shelves. Eric Harlow's text Developing Linux Applications with GTK+ and
GDK, published by New Riders, is an introduction to the world of GTK+ that
many refugees from the world of MS Windows will find useful. Although not
meant for the experienced user, this book does have its high points, even for
the old hands of GTK+ like me.

The book is laid out in four sections:

1. Programming in GTK+
2. Application Examples
3. Drawing, Color and GDK
4. Extending GTK+

Chapter 1 isn't actually a chapter—it's the preface. The rest of the book starts
with GTK+ basics and moves on to more complex issues with each section,
which is made up of two to six chapters. The layout is a little strange with
respect to example code. The chapters in the first section are introductory in
nature, covering glib and some basic GTK+ features. The chapters in the second
section each cover an example application, aimed at showing off what was
learned in the first section. The third section, however, has its example code as
the last two of its four chapters. The fourth section has the examples
intermixed in each chapter. You might not really notice this layout pattern
unless you step back and look at it from a reviewer's point of view, as I did, but
it is a little strange to see the material broken down in that way. I would have
expected examples simply to be intermixed with each chapter.

Chapter 2 describes glib, the library of utility routines for handling hashes,
linked lists and memory management. I don't personally use glib all that much
—I have simple library routines of my own to do these things I'd written long
ago and carry from place to place. However, some widgets make use of certain
glib features directly, so it helps to become familiar with what it is and what it
does.

The next chapter shows how a simple GTK+ application is laid out. This leads
into Chapter 4's introduction to basic widgets: buttons, labels, menus and text-
entry widgets. Chapters 5 and 6 also describe widgets. Although several
chapters are on widgets, you need to realize they can be fairly complex and
offer many options and their accompanying support and convenience routines.
No widget description takes up more than two pages (except the Clist and Text
widgets, which are introduced very late in the book). Don't expect detailed API
descriptions here—this text is very introductory in nature.

On pages 27 and 28, Eric did get one minor thing wrong—he said GTK+ came
from the GIMP, and that it stands for the GNU Image Manipulation Project. The
P in GIMP actually stands for “Program”. He also said GTK+ was born over
licensing issues relating to the GIMP's original widget set, Motif (though not in
so many words). I don't believe that was the driving reason. Motif was limited in
some areas, and not having source made it difficult to extend it. Plus, I think the
programmer wanted to work on a widget set from scratch anyway.

Eric describes accurately how to build applications using a single command line,
including the recommended use of the gtk-config script. One additional item
might be the use of the GTK_CONFIG environment variable. If you use this in
your projects, you allow people who have multiple versions of GTK+ installed
(it's a constantly evolving library) to build whichever version of the library they
need.

The section on container widgets in Chapter 3 could have used some finer
detail. Packing with boxes and tables is often a confusing area for recent
converts.

Chapter 4 starts off with some discussion on the casting of widgets. GTK+
widgets are generic when created, so to use them with type-specific functions
such as gtk_label_set_text, you need to cast the widget to the correct type. This
is done with macros, such as GTK_LABEL. The discussion in the text is good but
brief. A table showing inheritance for widgets would have been nice, but this
isn't a reference text.

On page 51, Eric had a somewhat strange segue into the paragraph on signals
after finishing off the discussion on casting. The information is useful, though it
seemed to come in out of the blue.

The rest of Chapter 4 introduces the reader to labels, buttons, text input
(known as entry widgets), simple lists, combo boxes (lists with text input fields),
option menus and generic containers (widgets that hold other widgets). This is
where some discussion on naming schemes for widget-specific functions would
probably have been helpful for those willing to rummage through the GTK+
source code.

Chapters 4, 5 and 6 are descriptions of various widgets. Chapter 7 begins the
second section and its example applications. The use of the notepad
application as an example was a good idea—it's a familiar application to
developers—but the section on the text widget should be tempered with the
knowledge that it's likely to change in the next major release of GTK+. Owen
Taylor, the man who wrote the original text widget, has said the design doesn't
lend itself well to new features, and he has some better ideas on how to

redesign it. Whether that will mean applications using the widget will no longer
work is unknown. These changes will probably not happen for some time,
however.

One problem with printed texts is the amount of time it takes publishers to get
them to market and onto shelves. Because of this, the text is a little behind the
curve for the current version of GTK+, which is version 1.2. I believe Eric was
working with version 1.1.5 at the time he wrote the text. Some of the examples,
although they work, use outdated functions. For example, he uses gtk_label_set
in many places in the code. The correct function to use with GTK 1.2 is
gtk_label_set_text. You can check the GTK+ web site (http://www.gtk.org/) to
find changes from GTK 1.0 to 1.2, if you are uncertain about any of the other
code in the book.

One common concern about labels, not mentioned until the last chapter on
creating your own widgets, is that labels are subclassed from the GtkMisc
widget, which means labels don't receive signals. Thus, they must be wrapped
in other widgets. For event handling, you would drop the label inside a
GtkEventBox widget. Remember this bit of information—you're bound to need
it eventually.

Chapters 10 through 13 make up the third section, covering issues relating to
color and drawing with low-level GDK routines. I found chapter 10 to be the
most useful, as I finally figured out how to do double buffering. Double
buffering is simply a matter of drawing in an off-screen (non-visible) region—a
pixmap—and then copying that region over the currently visible version. The
technique is simple once you learn it. It's a subtle piece of code, and often
hidden in the bowels of more expansive subroutines. Eric explains double
buffering clearly and provides good examples of how to use it.

Chapter 11 moves into styles, colors and fonts. The discussion here is like the
rest of the text: brief but accurate. The styles section, however, talks about the
use of styles programmatically. It doesn't discuss them from the point of view
of gtkrc files. Styles are, specifically, an API term for GTK+, but adding themes
(what an end user might refer to as a style) is a big deal with applications using
GTK+. The gtkrc files add a “look”, but are far less sophisticated than the
application-default files common with Motif. The latter allow external definition
of command-line arguments, for example. Currently, gtkrc strictly handles look-
and-feel issues.

There is no discussion on the use of command-line arguments with GTK+. Motif
programmers are probably used to Motif's built-in command-line parser. GTK+
doesn't have such a thing. If you plan on having command-line arguments, you
will probably want to use getopt_long, unless you're worried about portability

http://www.gtk.org

to non-Linux platforms. In that case, you may have to roll your own parser,
since not all UNIX boxes have getopt_long.

Source code for the book is available from New Riders' web site. It comes in
gzipped tar format, with the examples broken out into chapter-by-chapter
directories. There is no top-level Makefile, but the individual directories build
easily enough. Be sure to have the gtk-config script in your path. Most of the
applications worked fine for me. The molecule example didn't seem to draw
any molecules, unfortunately. And the double buffering example—one clock
without and one clock with—didn't show the advantage of double buffering on
my system, because it's fast enough (400MHz) that the redraws in the
unbuffered version were hardly noticeable. But you should pay attention to
that example. Double buffering is a good thing to learn if you're doing any
serious amount of drawing with GDK.

Considering the introductory nature of this book, I wonder how useful the last
chapter on writing your own widgets will be to others. This space might have
been better used to cover more details on widget specifics.

Eric's writing style is succinct and clear. The book has few typos—on-line
documentation is notorious for poor editing, which is one reason why printed,
professional documentation is here to stay. Reading this book is certainly easier
than reading many of the on-line documents I've seen.

This book is a beginner's guide to writing GTK+ applications. It is not a
reference, and leaves much to be desired regarding in-depth widget
explanations. If you need only an introduction and you're looking to migrate to
Linux and GTK+, it isn't a bad place to start.

Michael J. Hammel (mjhammel@graphics-muse.org) is a graphic artist wanna-
be, a writer and software developer. He wanders the planet aimlessly in search
of adventure, quiet beaches and an escape from the computers that dominate
his life. He is the author of The Artists' Guide to the Gimp.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

lpd: Getting the Hard Copy

Michael Hughes

Issue #68, December 1999

How to set up local and networked printing services in Linux.

In the 16th century, the printing press opened up a whole new world of
communications. Print was the first mass communications medium, paving the
way for books, magazines, newspapers and all the other amenities of this
generation. Although we live in a world dominated by computers and
electronics, the printing press still plays an important role in our everyday lives.
This fact is especially apparent if you are reading the print version of this
magazine.

Today, the power of the printing press is available to the individual. Computers,
printers and copy machines allow virtually anyone to communicate effectively
to any number of people. Better still, it's easier and cheaper than ever.

One of the most common questions asked by newcomers to the Linux world is
how to get their printers working with Linux. There are, in actuality, a few
different ways to accomplish this task. First, however, you must enable lp
support in the kernel and recompile. This is done in most kernels already. To
check if your kernel is ready, plug your printer in and watch your kernel startup
messages. If you see references to lp0 or lp1, your kernel is configured for
parallel printing.

Setting it Up

The most primitive way to print a text file is simply to use the cat command to
send it to the printer at /dev/lp1:

cat filename.txt > /dev/lp1

This will catenate the file (in this case, filename.txt) to /dev/lp1, your printer
device. Replace /dev/lp1 with the device name of your printer, if it is different.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The main problem with printing text files this way is that most people get the
dreaded “staircase” effect. It makes the printed text look

Something
 Like
 This.

This is not acceptable, so most people use lpd (line printer daemon) to print
files. If you don't have lpd already installed, it is obtainable from ftp://
metalab.unc.edu/pub/Linux/system/printing/ as the lpr-linux package. Once
you have downloaded and installed the software, you can add the following
lines to one of your startup scripts, in order to start lpd when the system boots.

if [-f /usr/sbin/lpd]; then
 echo -n "Starting lpd..."
 /usr/sbin/lpd
fi

You might want to replace the path to lpd with your custom path.

However, running lpd alone isn't very useful. All it actually does is facilitate the
queueing of print jobs. It does no translating or converting—that's why print
filters are used. As you may know, many Linux and X applications can output
and print to PostScript. This includes Netscape and the GIMP. To take
advantage of these powerful applications and many others, you have to install
a filter for your specific printer. Several different printer filter packages are
available, so almost all popular printers are supported.

To install a filter, the first thing you must do is download the one you want.
Many filters are available from the Sunsite Linux archives at ftp://
metalab.unc.edu/pub/Linux/system/printing/.

The most popular print filters are apsfilter and magicfilter. In addition to the
major print filters, there are many small converters and translators as well as
other printer filters available for download at metalab. After you have
downloaded the package you want, just follow the directions provided and
install the package. (Note that metalab.unc.edu used to be sunsite.unc.edu.)

Now comes the tricky part. The lpd software reads from a configuration file
called the printcap, or printer capability database. The printcap is a simple text
file that holds the information necessary for lpd to output to printers. It has
vast capabilities and options, but we're going to edit it in only the simplest ways
right now. Fire up your favorite text editor and open the file /etc/printcap. If
there is text currently in the file, make sure you don't need it (it's all
commented and annotated), and comment out unneeded lines by placing a #
symbol in front of the first character of those lines.

ftp://metalab.unc.edu/pub/Linux/system/printing
ftp://metalab.unc.edu/pub/Linux/system/printing
ftp://metalab.unc.edu/pub/Linux/system/printing
ftp://metalab.unc.edu/pub/Linux/system/printing

At this point, you are ready to start entering printer information into the file.
Make sure you have installed your print filter correctly before proceeding.

Append this one line to your /etc/printcap file:

if=/path_to/print_filter:

First, replace name with the name of your printer. Second, replace lpx with the
device name of your printer, which is probably lp1. Finally, replace /path_to/
print_filter with the actual path to your print filter. You must remember to
change the permissions of your installed print filter so that it is executable and
readable. Simply type:

chmod 755 /

Also, make sure the print spool directory, /var/spool/lpd, exists. If you want to
print to a remote printer on another UNIX machine, set up the printer on that
machine, then append (don't start a new line)

rm=remotehost:rp=remoteprinter:

to the previous /etc/printcap entry shown above. If you decide to do this,
however, replace :lp=/dev/lpx: with a plain :lp=:. For more options to put in the
printcap file, look at the man page for printcap (type man printcap at the
prompt).

Now, restart lpd by issuing the following command:

killall -HUP lpd

There should be a brief pause, then you will be dropped back to a command
prompt. If you've followed these directions correctly, do a test print: fire up
Netscape and print a test page. Click on the File menu and select “Print” or
“Print Frame”. Make sure the Print Command field is set to

lpr -

Of course, replace printername with the name you gave your printer in /etc/
printcap. There is no space between the -P and printername. To print text files,
you can open them up in a program that is printer-aware (such as Netscape), or
you can type the following on a command line:

lpr -

Replace printername with the printer's name and replace filename with the
name of the file you want to print. At this point, if all went according to plan,
there should be a nicely printed piece of paper on your printer.

Sharing Your Printers

Now that you have your printer set up for yourself, you might want to consider
sharing it with the rest of the network. There are a few ways of doing this. With
other UNIX or Linux machines with BSD-styled print systems, just follow the
directions in the previous section, and you'll be off and running. Pay attention
to the specified network configuration line.

The most likely scenario, however, is one Linux machine sharing its printer or
printers with one or more Windows machines. To do this, you're going to want
to use Samba, the SMB implementation for UNIX, which runs quite well on
Linux. After you have finished setting up the printers, install Samba on the
Linux machine. Samba is available at http://www.samba.org/ and is open-
source software as well.

Read through the Samba documentation to get it installed. It's a quick install,
but it does require some editing of configuration files. For those of you who are
impatient, here's a simple configuration file to use (locate it at /usr/local/
samba/lib/smb.conf):

[global]
 remote announce = 192.168.1.255
 interfaces = 192.168.1.1/255.255.255.0
 netbios name = your_computer_name
 workgroup = your_workgroup_name
 printing = bsd
 security = share
[public]
 comment = Public Stuff
 path = /tmp
 public = yes
 writable = yes

This will export one share for use on the network, named “public”. If you have
the Win95 machines set up with the same parameters, you should be able to
browse the public share and look through all of its subdirectories.

Once that is done, you're ready to add the printer. The printer is added to the
config file in the following manner:

[printername]
 path = /
 printer name =
 writable = yes
 public = yes
 printable = yes
 print command = lpr -Pprintername %s; rm %s

Replace printer_spool_dir with the printer's spool directory (I just use /tmp, but
you can use /var/spool/lpd/ if you wish) and printername with the name of your
printer (I just used hp).

At this point, restart Samba:

http://www.samba.org

killall -HUP nmbd; killall -HUP smbd

Make sure you can still browse files across the network. This time, you should
see a printer icon with the assigned name from the Samba configuration file.

On the Win95 clients, it would be best to install a generic PostScript printer.
Then all your Win95 programs will output PostScript, and the printer filter on
your Linux server will be able to both spool and print your documents as if they
were local documents. To add a network printer in Win95, select the “Network”
option when the Add Printer script prompts you. However, this approach
doesn't always work, and you might want to use a more crude way of printing
by changing the print command line in the above config file snippet to the
following:

print command = cat %s > /dev/lp1; rm %s

Replace /dev/lp1 with the device to which your printer is attached. After you
have replaced that line, re-install the printer on your Win95 box as the actual
type; i.e., if you have a LaserJet 4L, install it as a LaserJet 4L in Win95. Note that
with this method, no print spooling will take place on the Linux machine.

Wrapping Up

I hope this tutorial has helped you set up printing services in Linux. If you're
fortunate enough to have a network in your home or office, you should also be
able to set up the printer in question for use on the network by other
computers. If you're still having trouble printing, you can check out the Linux
Printing-HOWTO located at metalab.unc.edu/LDP/HOWTO/Printing-
HOWTO.html. Good luck!

Michael Hughes is an honors student living in Thousand Oaks, California. His
hobbies include Perl programming and snowboarding, as well as administering
computers running Linux. He can be reached via e-mail at mfh@psilord.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://metalab.unc.edu/LDP/HOWTO/Printing-HOWTO.html
http://metalab.unc.edu/LDP/HOWTO/Printing-HOWTO.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Implementing Linux System Calls

Jorge Manjarrez-Sanchez

Issue #68, December 1999

How to create and install a system call in Linux and install an interrupt for
controlling the serial port.

This article is based on my experiences in creating and installing a system call in
Linux and how to install one interrupt vector to control the serial port. In one
way, this is a mini-HOWTO about these two topics.

What is a System Call?

A system call (or system request) is a call to the kernel in order to execute a
specific function that controls a device or executes a privileged instruction. The
way system calls are handled is up to the processor. Usually, a call to the kernel
is due to an interrupt or exception; in the call, there is a request to execute
something special. For example, the serial port may be programmed to assert
an interrupt when some character has arrived, instead of polling for it. This
way, the processor can be used by other processes and service the serial port
only when it is required.

The internal operation between an interrupt request and its servicing involve
several CPU registers and memory segments. Briefly, a device raises an
interrupt by asserting an interrupt request line on the Peripheral Interrupt
Controller (PIC) which informs the CPU by setting the interrupt request pin.
After each instruction, the CPU checks this pin. If it is enabled, it gets the ID
from the data bus, which points to the Interrupt Descriptor Table (IDT), where a
number of task, interrupt and gate descriptors are stored. The descriptor
contains a selector to the Global Descriptor Table (GDT) which contains the
base address to a memory segment in which the Interrupt Service Routine (ISR)
resides.

Note that the CPU has suspended the process it was executing, so it has to save
some information to be able to resume the process after the interrupt has

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

been serviced—this is a context switching. Several files are involved in this
process; most can be found in the linux/arch/i386/kernel/ directory. One is
entry.S, an entry point to all system calls which initializes the treatment of
exceptions. Another is irq.c, which contains the functions to deal with
interrupts. The linux/arch/i386/boot/setup.S file initializes the GDT, installs
virtual memory, etc. There are many connections between files ending in .h and
.c. You can check irq.c to see how many includes are there to get macros
definitions, such as cli(), which clears interrupts in linux/include/asm-i386/
system.h.

To follow the definition path of any function, type at your command prompt:

grep cli 'find / -name '*.[ch]'
-print'

This will search all files with extension c and h in the root directory for the word
cli. Also, you can issue the command man 2 intro to see something about
system calls.

Implementation of System Calls

There are several ways to create, install and execute a system call. The best is
the one that isn't concerned with low-level details like context switching and
doesn't code any routines in assembly language. This can be done through the
use of the _syscallN macro in the linux/include/asm/unistd.h directory; it is
expanded in assembly, but the operating system takes care of details. It uses
the int 0x80 to transfer execution control to the kernel. One possible problem is
this macro can expand to an existing function, so care must be taken;
otherwise, you will overwrite the existing function.

In order to implement your own system calls, you should have the Linux kernel
source code (first make a backup) to use as the working copy. As superuser
(root), create in your home directory an entire tree copy of /usr/src/linux, as
you will not have the chance to do so again. The files we will use are in
somewhere/linux/.

Now you must choose a name for every function you are planning to
implement. You can check the existing ones in your source tree at linux/arch/
i386/kernel/entry.S and linux/include/asm/unistd.h. In entry.S, they are at the
end, and in unistd.h, at the beginning. Checking these files will also help you get
an idea of how to create a prototype of a system call. While checking, you will
see that each call is associated with one number. This number is passed in the
%eax processor register indicating the number of arguments, and each
argument of the system call (a function) is passed in %ebx, %ecx, %edx, %esi or
%edi--up to five arguments on Intel platforms. The macro definitions

corresponding to each _syscallN, depending on the value of N, can be found in
unistd.h. More on the internal workings can be found in various files under
linux/arch/i386/, because we will leave the “dirty work” to the operating system.

Now let's see how to implement a new system call using the syscallN macro in
the simplest possible way. Let's make a system call sysSum, which accepts two
integer arguments and returns the sum of the two. Also, it uses printk, which is
similar to printf except that it works on the kernel level, so we will see when our
function is called.

To do this, edit a randomly selected file (for example, the file linux/ipc/sem.c),
and at the end, add the following lines:

asmlinkage int sysSum(int a, int b)
{
 printk("calling sysSum\n");
 return a+b;
}

Then edit unistd.h and add

#define __NR_sysSum 171

171 is the next in numerical order. In entry.S near the end, add
.long SYMBOL_NAME(sysSum)

Finally, increment by one the number that is the last line:
.space (NR_syscall-172)*4

If you don't match number and name in both files, you will get an “undefined
reference to sysSum” error message. If you have a working kernel, you have to
be careful only about incrementing the numbers by one and correctly writing
your function name. At this point, you have added your system call; now you
should get the new kernel with it. To recompile the kernel, take the following
sequential steps:

#make config
#make dep
#make clean
#make zImage
#cat ~/linux/arch/i386/boot/zImage >/dev/fd0

Step 1 creates the basic kernel configuration; you can skip it next time if no
hardware changes are made. Step 2 checks that any dependency between files
is correct. Step 3 cleans any compilation intermediate file (object files, etc.). The
last two create a compressed kernel image and copy it to floppy, so we can try
our new kernel and keep the original one untouched.

Reboot using this newly created kernel to invoke the system call from a user
program: simply insert the floppy disk on the drive and reboot. This simple
program tests the newly created system call:

#include <linux/unistd.h>
_syscall2(int, sysSum, int,a,int,b)
main(){
printf("the sum of 4+3 is %d\n",sysSum(4,3));
}

The include line indicates where the _syscall definition is located. The next line
says our system call has a return type of int and two arguments of type int. To
compile, use the command

gcc -I ~/linux/include

to instruct the compiler to use our include file. After execution, you will see
messages: first the one from sysSum, then the one from the test program.

The functions we will implement will be the basic ones needed to control the
serial port using interrupts on character reception. The serial ports can't be
accessed by a common user. In Linux, the functions inb(port) and outb(byte,
port) exist to receive and send one byte; inw and outw do the same on two-byte
data. In order to use them, you have to gain the rights by using the iopl or
ioperm functions, which must be invoked as super user and will give the
common user application access to the I/O ports.

The Serial Port

The serial port, called UART or RS-232, has two I/O addresses given by BIOS (on
PC systems) associated with it and one IRQ (interrupt request) for each.
Fortunately, they are the same as in DOS:

COM1 0x3F8 IRQ4
COM2 0x2F8 IRQ3

Each I/O port has a range of addresses to hold various support registers. COM1
is mapped in memory from 0x3F8 to 0x3FF, and COM2 from 0x2F8 to 0x2FF.
See Table 1 for a description of some of them. To set one bit in any register,
first read the actual value, and then OR with the desired value, thus preserving
the other bit values.

Table 1

https://secure2.linuxjournal.com/ljarchive/LJ/068/3326t1.jpg

The Serial Port Syscall

The functions we are going to implement are the ones shown in Table 2. At this
time, we will use IRQ4, but it's not difficult to use the other port or implement a
select port routine.

Table 2

Listing 1

As you can see in Listing 1, we set some defines and global variables, save flags
and disable interrupts to make our transaction atomic:

save_flags;
cli();

If an interrupt with higher priority takes the processor, the UART will be
initialized incorrectly. We also need to indicate the routine or interrupt vector
that services IRQ4. To service the interrupts, we use request_irq (in linux/arch/
i386/kernel/irq.c) that is more or less the equivalent of setvect in DOS. Its
prototype is

int request_irq(unsigned int irq,
void (*handler) (int, void *, struct pt_regs *),
unsigned long irqflags,
 const char *devname,
 void *dev_id)

and we call it with:
i = request_irq (
myirq,sioRead,SA_INTERRUPT,"sioJRMS",NULL);
if (i) return -1;

where myirq is equal to 4 (the COM1 IRQ), sioRead is a void pointer to the
interrupt vector, that is, the routine that will service the interrupt; and
SA_INTERRUPT is a flag that states our interrupt will be of type “fast” or non-
maskable. sioJRMS is a name generally used to identify device drivers, but is
used here to monitor the interrupts serviced by our routine by looking at the /
proc/interrupts file. Once our program is running, we check this file to see if our
interrupt has been set. If the value returned for i is 0, the interrupt vector is
installed.

Next we have to set some UART initial values by using the outb function.
Remember, at this time we are a superuser. After we have created our system
calls, recompiled the kernel and rebooted with it, these functions will be
available as an interface to the serial port in a library for every user without
requiring special privileges. We use a constant, PORT, to identify the port
address, so you can change it later.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3326t2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3326l1.html

outb(0,PORT + 1); /* Disable interrupts - bit
 0 ->0 */
outb(0x80,PORT + 3); /* enable DLAB - bit 7 ->1*/
outb(0x0C,PORT + 0); /* Set Divisor LSB */
outb(0x00,PORT + 1); /* Set Divisor MSB */
outb(0x03,PORT + 3); /* 8 Bits, No Parity, 1
 Stop Bit */
outb(0xC7,PORT + 2); /* Enable FIFO if UART is
 16500+ */
outb(0x0B,PORT + 4); /* Turn on DTR, RTS, and
 OUT2 */
outb(0x01,PORT + 1); /* Interrupt when data
 received */

These instructions set an initial baud rate of 9600. To set to a different rate,
divide 115,200 (crystal frequency) by the divisor formed by registers 3F8 (MSB)
and 3F9 (LSB) when bit 7 of 3FB is 1. Now that we have initialized the UART, we
can restore flags with the line:

restore_flags(flags);

We don't need sti (set interrupts), because it is done automatically by
restore_flags. Next, define the routine that will service the interrupt to read a
character and put it in a circular queue:

static void sioHandler(int myirq, void *dev_id, struct pt_regs * regs)
{
 int i;
 do { i = inb(PORT + 5);
 if (i & 1) {
 buffer[bufferin] = inb(PORT);
 bufferin++;
 if (bufferin == 1024) bufferin = 0;
 }
 }while (i & 1);
}

The next function is the one available as a syscall to all users:
asmlinkage int sioRead(void)
{
char ch;
if (bufferin != bufferout){
 ch = buffer[bufferout];
 bufferout++;
 if (bufferout == 1024) bufferout = 0;
 return ch;
 }
}

It will return a character from the buffer. The purpose of other syscalls is
explained in Listing 1. Now we have to deal with informing the kernel that new
system calls are created, using the steps mentioned previously.

In unistd.h, we put a line for each one of the newly created syscalls:

#define __NR_sioEnable 170
#define __NR_sioRead 171
#define __NR_sioWrite 172
#define __NR_sioEnd 173
#define __NR_sioSetDivisor 174
#define __NR_sioGetDivisor 175

Note that the corresponding numbers will vary depending on the total number
of system calls you have. In the entry.s file, put the lines:

.long SYMBOL_NAME(sioEnable)

.long SYMBOL_NAME(sioRead)

.long SYMBOL_NAME(sioWrite)

.long SYMBOL_NAME(sioEnd)

.long SYMBOL_NAME(sioSetDivisor)

.long SYMBOL_NAME(sioGetDivisor)

and remember to increment the number in the last line.
.space (NR_syscalls-177)*4

Adding a Makefile

This time, we are not going to modify any files. Instead, we will create our
library with our system calls. First, create a directory called /sio under the
kernel source tree. Within it, you are going to create a file called sio.c which will
contain the entire source of Listing 1 with all the includes, defines and system
calls we have created. Now, in order to rebuild the new kernel with our library,
we have to create a Makefile, also located in the /sio directory:

#Makefile for Serial Input/Output system calls
O_OBJS = sio.o
O_TARGET = siocalls.o
include $(TOPDIR)/Rules.make

This file will invoke Rules.make under our Linux source directory. Also, the top-
level Makefile (the first under your source directory) will work for us. Edit this
Makefile, define where the directories of sources are defined, and add our new
directory with the line:

SIOCALLS = sio/siocalls.o

This appends the name of our directory to the path of source directories.
Because we are using outb, we must compile with -O or -O2 to enable
optimization to allow the use of inline macros. Don't worry—the top-level
Makefile does this. Now follow the steps mentioned earlier to recompile the
kernel.

Testing the New Syscall

To work with our system calls over the serial port, make a serial cable in null
modem configuration. You will need two DB-9 connectors and wire 2-3, 3-2, 4-6,
6-4, 5-5, 7-8 and 8-7 pins. Then reboot with the new kernel and use some
program like the one in Listing 2 in the archive file (see Resources) as a non-
superuser, and you will see you have control of the serial port using our
functions. Remember to connect two Linux boxes with the cable settings
described in the COM1 port.

Resources

Jorge Manjarrez Sanchez (jmanjarr@acm.org) has a master's Degree from the
Center for Computing Research at IPN Mexico. He is now involved in a co-
doctorate program with UPM at Spain. He has participated in several research
projects mainly in the database and Internet fields and has developed a JDBC-
Access type-3 driver. He spends his spare time studying Linux, Mexican History,
Astronomy and leading an ACM Student Chapter at CIC-IPN.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3326s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Web-Based Clipping Service

Reuven M. Lerner

Issue #68, December 1999

Let LWP turn your web client into a midnight marauder.

In November, we saw how Perl's Library for Web Programming (LWP) can be
used to create a simple HTTP client, retrieving one or more pages from the
Web. This month, we will extend those efforts to create a program that can not
only retrieve pages from the Web, but categorize them according to our
preferences. In this way, we can create our own web-based clipping service,
finding those articles that are of particular interest to us.

LWP consists of several modules which allow us to work with HTTP, the
“hypertext transfer protocol”. HTTP works on a stateless request-response
basis: a client connects to a server and submits a request. The server then
generates a response, and closes the connection. (If you missed last month's
column, it is available here: Working with LWP. You should read that article
before continuing.)

Downloading Files

We need a program that will go to a particular URL and save the contents of
that URL on disk. Furthermore, we want to follow any hyperlinks in that
document to collect other news stories. However, we do not want to follow
links to other sites; this not only reduces the chances that we will get
sidetracked, but avoids the possibility of being led astray too much.

In other words, I would like to be able to point a program at a site and retrieve
all of its files on to the disk. A first stab at such a program, download-
recursively.pl, is similar to the simple robot program we explored last month. It
uses two hashes, %already_retrieved and %to_be_retrieved, to store URLs.
Rather than storing the URLs as values in the hash, we use them as keys. This
ensures each URL will appear only once, avoiding infinite loops and
miscounting. URLs are placed in %to_be_retrieved when they are first

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/067/3673.html

encountered, then moved to %already_retrieved after their contents are
retrieved. $origin, a scalar variable that contains the initial URL, has a default
setting if no argument is provided on the command line.

Retrievals are performed with a while loop. Each iteration of the while loop
retrieves another URL from %to_be_retrieved, and uses it to create a new
instance of HTTP::Request.

The method $response->last_modified returns the date and time on which a
document was last modified. Subtracting $response->last_modified from the
current time, and then comparing this result with the maximum age of
documents we wish to see ($maximum_age) allows us to filter out relatively old
documents:

my $document_age = time -
 $response->last_modified;
 if ($document_age > $maximum_age)
 {
 print STDOUT
 " Age of document: $document_age\n";
 next;
 }

If the document is too old, we use next to return us to the next iteration of the
while loop—and thus the next URL to be retrieved.

Next, we parse the contents of the HTTP response, using the HTML::LinkExtor

module. When we create an instance of HTML::LinkExtor, we are actually
creating a simple parser that can look through a page of HTML and return one
or more pieces of information. The analysis is performed by a subroutine, often
named callback. A reference to callback is passed along with the URL that will
be parsed to create a new instance of HTML::LinkExtor.

my $parser = HTML::LinkExtor->new (\&callback, $url);

The resulting object can then parse our URL's contents by invoking:

$parser->parse($response->content);

When $parser->parse is invoked, &callback is invoked once for each HTML tag
in the file. Our version of &callback grabs each URL in the file from the href
attribute of each <a> tag, saving it in %to_be_retrieved unless it exists in
%already_retrieved.

Finally, we save the retrieved document on the local file system. The tricky part
of saving the file to disk has to do with the way in which we are retrieving the
URLs—we are not traversing a tree of URLs, but are pulling URLs out in their
hash order. This means the URL http://foo.com/a/b/c/ might be retrieved
before http://foo.com/a/index.html. Thus, we need to ensure that the directory

/a/b/c exists on our local system before /a and /a/b are created. How can we do
this?

My solution was to use Perl's built-in split operator, which turns a scalar into a
list. By assigning this list of partial directories into an array (@output_directory),
we can sequentially build up the directory from the root (/) down to the final
name. Along the way, we check to see if the directory exists. If it does not, we
create the new directory with mkdir. If the directory does not exist and mkdir
fails, we exit with a fatal error, indicating what error occurred.

Those URLs that lack a file name are given one of “index.html”. Since this is the
default file name accessed on many web servers, it stands to reason this will
probably not collide with any of those names.

The end result of running this program is a mirror of the downloaded site,
stored in $output_directory.

Sorting Through the Output

It is handy to be able to download all or part of a web site. However, our initial
goal was to be able to sort through the contents of a web site for one or more
phrases of interest to us.

Such a program is not very different from download-recursively.pl. Our new
version, download-matching.pl, differs in that it stores only messages that
contain one or more of the phrases stored in an external file, phrase-file.txt.
The code for both of these programs can be found in the file
ftp.linuxjournal.com/pub/lj/listings/issue68/3714.tgz.

There are several ways to perform such checking and matching. I chose to do it
in a relatively simple but straightforward way, iterating through each phrase in
the file and using Perl's built-in string-matching mechanism.

Since the phrases will remain constant during the entire program, we load
them from phrase-file.txt before the while loop begins:

my $phrase_file = "phrase-file.txt";
 my @phrases;
 open PHRASES, $phrase_file or die
 "Cannot read $phrase_file: $! ";
 while (<PHRASES>)
 {
 chomp;
 push @phrases, $_;
 }
 close PHRASES;

The above code iterates through each line of the phrase file, removing the
trailing newline (with chomp) and then storing the line in @phrases. Each

https://secure2.linuxjournal.com/ljarchive/LJ/listings/068/3714.tgz

phrase must be on its own line in the phrase file; one possible file could look
like this:

Linux
Reuven
mortgage

Once @phrases contains all of the phrases for which we want to search,
download-matching.pl proceeds much like its less discriminating predecessor.
The difference comes into play after the callback has already been invoked,
scanning through the file for any new links. A site's table of contents might not
contain any of the strings in @phrases, but the documents to which it points
might.

After collecting new links, but before writing the file to disk, download-matching
then iterates through the phrases in @phrases, comparing each one with the
document. If it finds a match, it sets $did_match to 1 and exits from the loop:

foreach my $phrase (@phrases)
 {
 if ($content =~ m/>.*[^<]*\b$phrase\b/is)
 {
 # Did we match?
 $did_match = 1;
 print " Matched $phrase\n";
 # Exit from the foreach if we found a
 # match
 last;
 }
 }

Notice how we surround $phrase with \b. This is Perl's way of denoting a
separation between words, and ensures that our phrases do not appear in the
middle of a word. For instance, if we were to search for “vest”, the \b
metacharacters ensure that download-matching.pl will not match the word
“investments”.

If $did_match is set to a non-zero value, at least one of the phrases was found
in the document. (We use the /i option to Perl's m// matching operator to
indicate that the search should be case-insensitive. If you prefer to make capital
letters distinct from lowercase letters, remove the /i.) If $did_match is set to 0,
we use next to go to the next iteration of the while loop, and thus to the next
URL in %to_be_retrieved.

This all presumes a Boolean “or” match, in which only one of the phrases needs
to match. If we want to insist that all of our phrases appear in a file to get a
positive result (an “and” match), we must alter our strategy somewhat. Instead
of setting $did_match to 1, we increment it each time a match is found. We
then compare the value of $did_match with the number of elements in
@phrases; if they are equal, we can be sure all of the phrases were contained in
the document.

If possible, we want to avoid matching text contained within HTML tags. While
writing this article for instance, I was surprised to discover just how many
articles on Wired News (a technical news source) matched the word
“mortgage”. In the end, I found the program was matching a phrase within
HTML tags, rather than the text itself. We can avoid this problem by stripping
the HTML tags from the file—but that would mean losing the ability to navigate
through links when reading the downloaded files.

Instead, download-matching.pl copies the contents of the currently examined
file into a variable ($content) and removes the HTML tags from it:

my $content = $response->content;
 $content =~ s|<.+?>||gs;

Notice how we use the g and s options to the substitution operator (s///),
removing all pairs of HTML tags, even if they are separated by a newline
character. (The s option includes the newline character in the definition of .,
which is normally not the case.)

We avoid the ramifications of a greedy regular expression, in which Perl tries to
match as much as possible, by putting a ? after the +. If we were to replace <.+>,
rather than <.+?>, we would remove everything between the first < and the final
> in the file—which would probably include the contents, as well as the HTML
tags.

One final improvement of download-matching.pl over download-recursively.pl
is that it can handle multiple command-line arguments. If @ARGV contains one
or more arguments, these are used to initially populate %to_be_searched. If
@ARGV is empty, we assign a default URL to $ARGV[0]. In both cases, the
elements of @ARGV are turned into keys of %to_be_retrieved:

foreach my $url (@ARGV)
 {
 print " Adding $url to the list...\n"
 if $DEBUGGING;
 $to_be_retrieved{$url} = 1;
 }

Using download-matching.pl

Now that we have a program to retrieve documents that fit our criteria, how
can we use it? We could run it from the command line, but the point of this
program is to do your work for you, downloading documents while you sleep or
watch television.

The easiest way is to use cron, the Linux facility that allows us to run programs
at regular intervals. Each user has his or her own crontab, a table that indicates
when a program should be run. Each command is preceded by five columns

that indicate the time and date on which a program should be run: the minute,
hour, day of month, month and day of the week. These columns are normally
filled with numbers, but an asterisk can be used to indicate a wild card.

The following entry in a crontab indicates the program /bin/foo should be run
every Sunday at 4:05 A.M.:

5 4 * * 0 /bin/foo

Be sure to use a complete path name when using cron—here we indicated /
bin/foo, rather than just “foo”.

The crontab is edited with the crontab program, using its -e option. This will
open the editor defined in the EDITOR environment variable, which is vi by
default. (Emacs users should consider setting this to emacsclient, which loads
the file in an already running Emacs process.)

To download all of the files matching our phrases from Wired News every day
at midnight, we could use the following:

0 0 * * 0 /usr/bin/download-matching.pl\
www.wired.com/news/http://www.wired.com/news/

This will start the process of downloading files from http://www.wirec.com/
news/ at midnight, placing the results in $output_directory. We can specify
multiple URLs as well, allowing us to retrieve news from more than one of our
favorite news sources. When we wake up in the morning, new documents that
interest us will be waiting for us to read, sitting in $output_directory.

Conclusion

Many organizations hire clipping services to find news that is of interest to
them. With a bit of cleverness and heavy reliance on LWP, we can create our
own personalized clipping service, downloading documents that reflect our
personal interests. No longer must you look through a list of headlines in order
to find relevant documents—let Perl and the Web do your work for you.

Resources

http://www.wired.com/news/
http://www.wirec.com/news
http://www.wirec.com/news
https://secure2.linuxjournal.com/ljarchive/LJ/068/3714s1.html

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel. His
book Core Perl will soon be published by Prentice-Hall. Reuven can be reached
at reuven@lerner.co.il. The ATF home page is at http://www.lerner.co.il/atf/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.lerner.co.il/atf
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Effectively Utilizing 3DNow! in Linux

Jonathan Bush

Timothy S. Newman

Issue #68, December 1999

A description of this new technology and its impact on machine performance.

In 1998, AMD (Advanced Micro Devices) released a new family of x86 CPUs that
included 3DNow! capability. 3DNow! is designed to deliver enhanced
performance for certain multimedia and floating-point operations. Other x86
clone CPU manufacturers, such as Cyrix and IDT (Integrated Device Technology,
Inc.), also initially pledged to support 3DNow! in forthcoming CPUs. Currently,
3DNow! support is provided by IDT's most recent generation of processors
(WinChip 2) as well as by AMD's K6-2, K6-3 and Athlon (K7) families of
processors.

In this article, we'll describe the 3DNow! technology (especially how it impacts
performance on the popular K6-2 and K6-3 CPUs) and show how to detect and
take advantage of 3DNow! using Linux. 3DNow! is an exciting development;
using it effectively can unleash outstanding performance by AMD and IDT
processors.

What is 3DNow!?

3DNow! builds on the Intel MMX (multimedia extensions to x86) capability. Ariel
Ortiz Ramirez described MMX and how to utilize it with Linux in issue 61 of
Linux Journal, so we won't go into much detail here about MMX. Briefly stated,
MMX adds eight 64-bit “multimedia” registers (MM0 through MM7), and 57
instructions that operate on those registers, to the x86 platform. Multiple short
integers can be stored (packed) into each multimedia register, and the MMX
instructions allow parallel computations on these packed integers. While MMX
is restricted to operation on integers, 3DNow! extends the multimedia registers
by enabling multiple (two) single-precision floating-point numbers to be stored
(packed) into each of them. The 3DNow! instruction set includes 21 new

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

operations on the multimedia registers. The majority of these instructions
provide fast, pipelined single-precision (packed) floating-point computation.

3DNow! capability is well-suited for fast calculation of common graphics
operations such as clipping, lighting and 3-D transformations, as well as special
effects involving application of physical models (e.g., fog, cloud and gravity
effects). However, any application with a fair amount of floating-point
computations can benefit from use of 3DNow! When used effectively, 3DNow!
can increase the floating-point throughput of an application by a factor of two
to four (or even more for some special-purpose applications). The increased
performance results because each 3DNow! operation produces two outcomes
(packed into each multimedia register), whereas standard floating-point
operations by the floating-point unit (FPU) produce only one outcome per
operation.

Furthermore, in the AMD K6-2 and K6-3, the MMX and 3DNow! operations have
access to dual pipelined execution units, enabling up to two 3DNow! operations
to execute simultaneously. Thus, up to four results can be computed per
processor clock cycle on the K6-2 and K6-3. (This compares to a maximum of
one floating-point result per clock cycle for the Pentium II; thus, a PII/450 has a
peak performance of 450 MFLOPS (million floating-point operations per
second) while a K6-2/450 has a peak performance of 1800 MFLOPS). The
standard floating-point computations on the AMD K6-2 and K6-3 are not
pipelined, which means there is a delay of two or more clock cycles between
each concluded standard floating-point computation. Using the 3DNow!
capability can turbo-charge the floating-point throughput of programs that
utilize 3DNow! instructions. For computers equipped with an AMD K6-2, K6-3 or
IDT WinChip2, peak floating-point performance is possible only for programs
that contain 3DNow! instructions.

Getting Started

Unfortunately, few compilers can generate 3DNow! instructions for compiled
code. Thus, to exercise the 3DNow! capability in programs written in high-level
languages such as C/C++, FORTRAN or Pascal, it's necessary to include explicit
assembly code which has 3DNow! operations. This is not difficult to do, so we
will demonstrate how to use 3DNow! in C/C++ programs in Linux.

One way to determine whether a given machine supports 3DNow! is to
download and run an application that identifies the processor and checks for
3DNow! capability. AMD has an application of this type that can be downloaded
from their corporate web site. A practical solution for determining from within
a program whether the host CPU supports 3DNow! is to use the CPUID

instruction, which returns information on processor features and is supported
by the entire x86 family. If a program determines that 3DNow! support is

present, it can exercise the appropriate sections of code which utilize 3DNow!
Specifically, 3DNow! support can be determined by calling the instruction
CPUID 8000_0001h. This instruction sets flag bits in the EDX register according
to the CPU's level of multimedia support. Bit 31 of the EDX register indicates
whether there is 3DNow! support; thus, CPUID sets this bit to 1 if the CPU
supports 3DNow! If bit 30 is also set to 1, the CPU supports the enhanced
extensions to 3DNow! available in the new AMD Athlon processor.

Some assemblers include support for 3DNow! instructions; assembly language
modules that include 3DNow! instructions will be assembled without difficulty
by such assemblers. However, many assemblers do not include direct support
for 3DNow! In many cases, it is still possible to use 3DNow! instructions with
those assemblers, although it will be necessary to define the instructions as
pseudo-instructions using data blocks or emits. Fortunately, AMD's web site has
a C++ header file that contains macro definitions for the 3DNow! instruction
set. Inclusion of this header file can enable development of embedded
assembly code within higher-level language programs. These macros specify
the hexadecimal decoding for the 3DNow! instructions using the emit pseudo-
instruction; the header file may need to be modified for certain compilers, as
not all of them support emit. Under Linux, we used the freely available Netwide
Assembler (NASM) to assemble code. NASM allows pseudo-instruction macros
to be built using the db command. We have created a header file that defines
the 3DNow! instructions using the db commands. This header file is available
for download from http://merlin.cs.uah.edu/visgig/threednow/. However,
NASM versions from 0.98 and beyond support 3DNow!, so the header file is
needed only with older versions. Incidentally, we found that NASM 0.97 doesn't
allow MM2, MM3, MM6, or MM7 to be result registers for 3DNow! operations.
NASM 0.98 has no such problem.

Using 3DNow in Gradient Computation

Some applications are especially well-suited for 3DNow!, such as graphics
rendering. Optimizing applications with a tiny amount of isolated floating-point
operations may not be worth the effort, due to the extra time associated with
coding in assembly language. There are several criteria to look at before
deciding whether to use 3DNow! with the K6-2 or K6-3. First, the application
should have at least a few single-precision floating-point computations grouped
in one part of the program, as there is some overhead involved in switching
into MMX/3DNow! mode. While in MMX/3DNow! mode, standard floating-point
operations that use the regular FPU are not possible. Standard integer
operations are fine while in MMX/3DNow! mode. The new K7 reportedly won't
have this overhead. The MMX mode switch can also break up internal
instruction pipelining, which could add overhead. The best way to minimize the
impact of the overhead is to use 3DNow! in units that contain several single-

http://merlin.cs.uah.edu/visgig/threednow

precision floating-point operations. Performance will also be improved if the
floating-point data is organized in a successive, regular format (such as arrays
of floating-point numbers) that enables a series of 3DNow! operations to be
performed in sequence.

One application that can be efficiently implemented using 3DNow! is an image
gradient calculation (edge detection), especially range image gradients. To
illustrate how 3DNow! can enable efficient operations on Linux, we'll be looking
at how the gradient calculation can be optimized for range and volume data. In
an image collected on a 2-D grid, gradient is a measure of the local change of
pixel values (e.g., pixel intensity) at a particular point; in a 3-D volume, gradient
measures the difference of intensity between a voxel (volumetric element) and
its neighbors. There are a variety of methods for determining the gradient. For
an image collected on a grid, one way to compute the gradient is as the
directional differences in value of the four immediate neighbors (to the north/
south and east/west) of each pixel. When this difference is computed for the
entire image, the result is that points that lie on the border between regions
usually have strong gradient magnitudes. The gradient magnitudes can be
viewed as an image—they look like a collection of region boundaries of the
original image. The image in Figure 1 is a range image produced from laser-
range data. In a range image, each pixel is a floating-point value which
expresses the distance from the viewing plane of the corresponding point on
the imaged object. We've displayed the image using intensities where brighter
values indicate closer points. Figure 2 shows the computed four-direction
gradient for the range image of Figure 1.

Figure 1.

Figure 2.

In general, the gradient magnitude at a particular point is given by the equation

|Gradient|=sqrt((0.5*delta(

where delta(x) is equal to the change in pixel intensity in the x direction and
delta(y) is the change in the y direction. We've illustrated the gradient for pixel
P1 in Figure 3. P1's gradient magnitude is:

Gradient(P1)=sqrt(0.25*((depth(P2)-depth(P0))
+(depth(P4)-depth(P6))<+>2<+>)).

Figure 3.

3DNow! is well-suited to perform this computation for range images. Since
range images can be stored as an array, points that lie next to each other on a
row will appear consecutively in memory. MMX has an instruction, movq, that
moves a “quadword” (four words—two single-precision floats) from memory
into a multimedia register. This means consecutive image pixels P4 and P5 can
be loaded into a multimedia register with one move. If P6 and P7 are loaded
into another MMX register, we can use the 3DNow! operation PFSUB to
subtract the contents of pairs of registers. The result of one 3DNow!
subtraction will be the delta(y) for both P1 and P2. One more subtraction can
yield delta(x) for these pixels. Additionally, 3DNow! operations can be used to
square delta(x) and delta(y), to add them together, to apply the multiplicative
factor and take the square root. The whole process can be implemented using
fewer assembly instructions (and about half the execution time) than would be
required for implementations using standard floating-point instructions.

We developed the assembly language function XYGRAD to assist in calculating
range image gradients. (The code for this function can be found in the archive
file ftp.linuxjournal.com/pub/lj/listings/issue68/3685.tgz.) The function
processes a single row of image pixels at a time using 3DNow!. XYGRAD can be
called from any C program using the prototype shown in the code. After

https://secure2.linuxjournal.com/ljarchive/LJ/listings/068/3685.tgz

assembling XYGRAD with NASM, gcc is used to link it with a C program that
utilizes XYGRAD.

Understanding Gradient Calculation Using 3DNow!

XYGRAD is passed as a pointer to the original image, called img_ptr, along with
the size of the row to process. The function steps through each image row four
pixels at a time. For a set of four pixels, the change in intensity in the x direction
is calculated first. The quadword containing P0 and P1 is moved with movq into
MMX register MM0. P2 and P3 are moved into the MM1 register. These
registers are then subtracted using the 3DNow! packed subtraction (i.e., PFSUB

MM0, MM1). The result is stored in the first operand, MM0, which is later
squared using the packed multiplication operation (PFMUL MM0, MM0). Similar
steps are followed to calculate the gradient in the y direction, with the squared
difference being stored in the MM2 register. MM0 and MM2 are then added to
get delta(x)<+>2<+> +delta(y)<+>2<+>, which is stored in the output array
referenced by result_img_ptr. After the whole image has been processed, a
second 3DNow!-optimized module is called by the C program to calculate the
square root of each pixel in the resulting image. This completes the gradient
calculation. The complete source code for both the C and assembly modules
used in the range image gradient calculation program can be downloaded from
http://merlin.cs.uah.edu/visgig/threednow/gradient/.

3DNow! Optimizations

One thing we kept in mind during the coding process is the ability of the K6-2
and K6-3 CPUs to pipeline instructions in two execution pipelines. Due to the
architecture of these processors, certain restrictions apply to the pipelining of
3DNow! instructions. Namely, each 3DNow! instruction belongs to one of two
subsets, and two instructions from the same subset cannot be issued in
parallel. For instance, the packed floating-point subtraction (PFSUB) and packed
floating-point addition (PFADD) both belong to the same subset, and therefore
cannot be issued in the same clock cycle. On the other hand, the packed
floating-point multiplication (PFMUL) belongs to the other subset of 3DNow!
instructions; therefore, PFMUL and PFADD instructions can execute
simultaneously, provided there is no operand dependency between them. It's
beneficial to interweave instructions from each subset as much as possible to
increase the likelihood of parallel computation. Most integer MMX operations
do not have such a restriction on the K6-2 and K6-3; achieving optimal floating-
point performance does require a little more consideration by the
programmer.

http://merlin.cs.uah.edu/visgig/threednow/gradient

Gradient Calculation Performance

Our 3DNow!-optimized gradient-calculation programs delivered excellent
performance. We conducted tests of the programs on a dual-bootable PC with
a 300MHz AMD K6-2 CPU to determine 3DNow! performance in both Windows
and Linux environments. On Linux, we used the Netwide Assembler (NASM)
version 0.98 to assemble the assembly modules. We used GNU C (gcc) version
2.7 to compile a C driver and link the driver to the assembly code. On Windows,
we used a popular commercial C compiler to assemble, compile and link the
assembly and C codes. The Windows assembler/compiler did not recognize
3DNow! instructions, so we had to include the AMD header file that defines
3DNow! using the pseudo-instruction macros. We tested the 3DNow!-optimized
gradient calculations on several range images and 3-D volumes.

Tables 1 and 2 show performance results for two representative data sets. In
Table 1, the average CPU times for execution of the 3DNow!-optimized range
image gradient calculation in Linux and Windows environments are shown.
(Times are averaged over 2000 trials for a 240x240 range image.) By
comparison, the 3DNow!-optimized code ran about nine times faster under
Linux than unoptimized standard C code which computes the data according to
the same pattern of pixel access, i.e., the unoptimized code was implemented
purely in C without use of 3DNow! and was compiled without any compiler
optimizations. When the standard C version of the gradient was compiled with
maximal optimizations by gcc in Linux (using optimization switches of -O2 -

ffast-math), it was still more than three times slower than the 3DNow!-
optimized code. This time, improvement is significant; the 3DNow!-optimized
version of the range image gradient calculation can be done in real time at
frame rates under Linux. The performance improvement was nearly as
impressive for the volume gradient computations—the times shown in Table 2
are for a 72x256x256 volume. The 3DNow!-optimized volume gradient
executed more than 2.5 times faster than fully optimized standard C
implementation, and better than 4.5 times faster than an unoptimized
standard C implementation.

Table 1

We've also tested the performance of the standard C range image gradient
implementation (i.e., the implementation without 3DNow! code) on a Pentium
II/333 running Linux. Using full compiler optimizations, the 240x240 range
image's gradient was computed in 17% more time on the PII than on the K6-2.
Thus, we estimate that the K6-2 can calculate range image gradient under Linux
about 30% faster than a comparably clocked PII. Of course, we should add that
it's generally easier to develop modules in C than in assembly language.

Table 2

https://secure2.linuxjournal.com/ljarchive/LJ/068/3685t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3685t2.html

Conclusion

3DNow! is an exciting development for desktop computing, offering the
potential for significantly improved performance for many applications.
3DNow! can be effectively utilized in Linux using NASM and gcc. For
applications that involve floating-point calculations, especially those where
speed is critical, incorporating modules that utilize 3DNow! instructions can
unlock outstanding floating-point throughput in popular CPUs such as the IDT
Winchip 2 and the AMD K6-2, K6-3 and Athlon processors.

Jonathan Bush (jbush@cs.uah.edu) recently received his B.S. degree in
Computer Science from the University of Alabama in Huntsville. He completed
much of the work described in this article as a National Science Foundation
Undergraduate Research Experience Scholar. He is currently a graduate
research assistant in the Department of Computer Science.

Timothy S. Newman (tnewman@mailhost.cs.uah.edu) is an Assistant Professor
of Computer Science at the University of Alabama in Huntsville. When he's not
teaching, he can often be found conducting visualization and imaging research
on Linux boxes.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jbush@cs.uah.edu
mailto:tnewman@mailhost.cs.uah.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Focus on Software

David A. Bandel

Issue #68, December 1999

mason, si, system-info and more.

The time is on us once again. The “feature freeze” for 2.3 was just announced.
By the time you read this, it will be down to last-minute testing and making sure
all is well before final release. What's new other than more device drivers? I
don't yet know everything new, but I do know that once again, I'll need to learn
new firewalling software. For 2.0, it was ipfwadm--not bad, but no fine-grained
control. For 2.2, it is ipchains--I liked the control, but heard many complaints
about its complexity, and I found very few configuration tools for this beast. So
I'm off to download and compile the latest kernel to test the new netfilter that
will be 2.4's packet mangling software. Here's hoping for configurability and
simplicity in one package.

mason: http://www.pobox.com/~wstearns/mason/

This aptly named software is, you guessed it, a firewall configuration program.
Basically, mason learns about the traffic passing through your gateway (soon to
be your firewall) and records the traffic so you can build a firewall brick by brick
(or chain by chain, as it were). The recording is done in the form of a line that
can be used by mason or by the ipchains-restore script. When the software
fires up, it checks what type of system you have: if it is a 2.0.x system, it will use
ipfwadm; if 2.2.x, it will use ipchains. The new netfilter software rules should
not be significantly different from ipchains, and support will be added before
the 2.4.x release if it hasn't been already (some of the code was in place but
disabled in the version I tested). The software does require you to review the
rules, so you do need to be able to read and understand them to decide which
rules to keep. It requires bash, ipchains or ipfwadm, and a kernel built with
firewall support.

si: http://si.netpedia.net/

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.pobox.com/~wstearns/mason
http://si.netpedia.net

This command-line system information utility will fill pages. si will tell most folk
more than they ever cared to know about their system, what resources (IRQs,
DMAs, etc.) are being used, what programs are running, how much memory
they're using, etc. The information can be obtained by other programs, but it
will take a few. In fact, I'm not sure what more information you could get or
want. While I haven't verified it, I suspect this program is reading a good part of
the /proc tree to return all this information; at least, it matches the information
I know to be available, just not as easily readable in /proc. It requires glibc.

system-info: blaine.res.wpi.net/files/system-info.0.7.tar.gz

Going from information overload to almost underwhelming by comparison, this
utility will provide one page of information nicely formatted in HTML—great for
putting something up on a web page. I looked, and while it had a fair amount of
information for only one page's worth, it was innocuous enough. I would feel
safe putting this on a public web page, whereas the utility above is more
information than even a wannabe cracker would want (or need). It requires
Perl.

DNS sleuth: atrey.karlin.mff.cuni.cz/~mj/linux.html

This little jewel is a DNS checker. With both a command-line interface and a
web interface, sleuth will check whether the configuration of your DNS
complies with the RFCs. It will give you warnings for some things and errors
when it sees something completely wrong. The best part is it will tell you what
is wrong and reference the RFC so you can see for yourself why it's bad and
how to fix it. No more guessing if it's correct or not—fast and thorough. It
requires Perl and the Net::DNS Perl module.

landb: http://avenir.dhs.org/landb/

Have a large LAN? Thankfully, I don't any more. But if I did, particularly one that
spans buildings (much less floors), and typically two or more /24 (class C)
networks, I'd be using something like this database to keep it sorted. It really is
overkill for a small network, though. I think I'd add a few comment fields to hold
a name and number or two for problems. Makes a nice complement to a
resource manager like MOT (Ministry of Truth) or IRM (IT Resource Manager). It
requires Perl, CGI, DBI, DBD modules, MySQL and a web server.

yafc: http://www.stacken.kth.se/~mhe/yafc/

yafc is yet another FTP client. You may be thinking, “I already have both
graphical and command-line FTP tools, and ncftp (a command-line client to
which this is a competitor) fills the latter niche nicely.” However, the nice thing

http://blaine.res.wpi.net/files/system-info.0.7.tar.gz
http://atrey.karlin.mff.cuni.cz/~mj/linux.html
http://avenir.dhs.org/landb
http://www.stacken.kth.se/~mhe/yafc

about competition is the newcomer has to have something that works better
than the incumbent, or otherwise why bother? Well, this one has—at least for
me. Side by side, I found yafc easier to use (important even to a command-line-
junkie like myself) and better designed. It has a few parameters you can set, like
cache and others. It requires libncurses, libreadline and glibc.

august: http://www.lls.se/~johanb/august/

It's been a while since I looked at any kind of HTML markup editor, and I don't
remember them being all that friendly or easy to use, so my HTML editor of
choice has always been vi. Now, you've probably guessed I'm not much of a
webmaster (it's true, I'm not)--I'm into substance over form. About the only
thing I didn't see in august, but would like to, is some markup selections for
PHP. It requires Tcl/Tk.

David A. Bandel (david@pananix.com) is a Linux/UNIX consultant currently
living in the Republic of Panama. Co-author of Que Special Edition: Using
Caldera OpenLinux, he plans to spend more time writing about Linux while
relaxing and enjoying life in the “Crossroads of the World”.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.lls.se/~johanb/august
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #68, December 1999

Readers sound off.

Practical Linux

I am at the crossroads, so to speak. Don't get me wrong—I'm a fanatic Linux
user, but... First of all, some background: I work for Futurekids (South Africa),
and our mission is basically to teach children and adults computer mastery
skills. Currently this is done entirely on MS platforms. I started to search for
alternative budget systems similar to what we use on MS, but had no luck. It
seems the only use for Linux in the classroom is for Internet access and file/
printer sharing.

This brings me back to the underlying problem. If we truly want to promote
Linux, we must start with the younger generation—the adults of tomorrow. If
we can work together to implement a solid education program based on the
Linux platform, I believe we will have success. The net result? Children use
Linux at school—they get frustrated with Windows at home—and eventually
more and more home Windows systems migrate to the Linux platform. But we
need this educational system first. To start, the software developers must begin
producing “kids” programs—and please, not another flash card program—but
programs that make use of multimedia to teach children how a mouse works,
how the keyboard works, then progress to Encarta-like encyclopedias, etc.

Dear Linux Developer Community—there is your challenge!

—Nico Coetzee nicc@mweb.co.za

Product Support

I have been using computers for many years, so I am no stranger to the
difficulties associated with installing a new OS. But to make claims in your
magazine that so far are false, such as the ease of loading Caldera, has put me

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

off both your magazine and Linux in general. I have tried to contact the
company: the person at the 1-888 number could easily be replaced by a tape
machine, technical-support lines requested I pay more money to make their
product work, and I have received no response from e-mail support. I write to
you because I read a review in your magazine, and dopey me, I thought
someone there used the software before they wrote about it.

—Michael Brooks AZTowGuy@aol.com

Sorry you had problems. In actuality, at least four people here at the office,
including the reviewer, used the Caldera LIZARD install successfully with only
the one problem discussed in the review. Since that time, we did try to install it
on an old machine with a strange configuration, and LIZARD hung up. We
switched to the LISA install and it worked fine, installing everything off the CD-
ROM without a problem. Took longer than LIZARD, but was still fairly easy.
Writing an easy install that includes all possible configurations of hardware,
both old and new, is not an easy task —Editor

The Revolution Continues

First off, I would like to say good job with your magazine. I always look forward
to the new issue hitting our shelves in my store. I work for Barnes and Noble
booksellers, and that's what the other part of this letter is about. I wanted to
inform you that due to the support of our Customer Relations manager, and of
the store in general, we have started a Linux Users Group through my local
store. We meet in the store once a month (the third Tuesday of every month,
for those of you in the Lakewood/Long Beach, CA, area). It has quickly grown to
be the most popular group in our store, even surpassing the regular reading
groups. I hope this trend continues and we see more user groups popping up.
Thanks again.

—Jason Lundy lcghent@yahoo.com

Is KDE the Answer?

I have to disagree with Phil Hughes' position in “Is KDE the Answer?” in
October's Linux Journal. At the end of the article, Phil states that we should all
jump on the KDE bandwagon because KDE is further ahead and is the default
on more distributions. He also states that one standard GUI is better than two
for appliance users.

I think this is wrong. First of all, there is something to be valued in diversity, as
diversity breeds strength. If one day KDE runs into a brick wall and cannot
further advance, we'd still have GNOME. Furthermore, if we all jumped on the
product that was furthest ahead, Linux would not exist today.

Second, I see no advantage to giving appliance users (or newbies, or any other
user) only one interface. While this may require less mental exertion on the
part of the user, it will also lead to a bland, homogenized world. A different,
novel interface may actually appeal to some of the appliance users.

Phil also mentions offering “one standard GUI rather than two”. This is like
saying the US has only two political parties. I use neither KDE nor GNOME,
because neither works well for me. Just try running either on a slower Alpha
with a TGA card, and you'll know what I mean. Instead I use icewm, which I
think is far superior to either. I've used other window managers such as mwm,
amiwm and twm, and find all of them far faster, more stable and in almost all
ways superior to KDE and GNOME, especially on low-end hardware.

By saying that we should all jump on the KDE bandwagon, Phil is saying that we
should all fit ourselves into KDE's mold rather than finding and developing the
tools that fit us. In my book, KDE is not the answer.

—Richard Griswold griswold@acm.org

Stability

I always look forward to reading my issue of LJ each month. Great magazine;
thanks.

The reason I am writing is to share a concern regarding Linux API stability. I
enjoy system work too, but the fact is my company sells applications, not
operating systems. If I am to produce shrink-wrapped applications, user and
kernel APIs must remain stable. I just worked my way through our several
drivers to get them from 2.0.* to 2.2.* series kernels, and now I see the driver
API is changing again in 2.3.*. It is a terrible temptation to keep improving, but
if it works, let's leave it for a while. And maintaining old APIs is not a long-term
answer either—that's what makes UNIX systems so fat, all the baggage they
carry around.

Thanks for listening.

—Elwood Downey ECDowney@ClearSkyInstitute.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

More Letters

Re: gcc performance on NT

I just read the LJ article on the performance comparison between Linux
and Windows 95/98/NT. In the article, gcc and pgcc on Linux were
compared to VC and CodeWarrior on Windows. The results showed that
gcc and pgcc were faster, and the article made the claim that this means
Linux is faster.

I'm curious—would Linux really be faster if gcc were run on Windows?
How does the program perform when compiled with DJGPP, Mingw32, or
Cygwin? Also, how would lccwin32 (the lightweight c compiler) perform?
—Paul Brannan

Thanks for your note.

You are definitely correct that performance is a function of many things—
the compiler, the memory, the motherboard, the CPU, the operating
system, etc. I think we were able to isolate performance to primarily the
OS and the compiler in our study (although I think we also were able to
do some comparison of CPUs in the study). We've tried to emphasize in
the article that it's the Linux/gcc or Linux/pgcc combination that is faster
than the Win/VC or Win/CW combination.

Here's one datapoint which we didn't present in the article. We have
benchmarked the application on some Sun Solaris machines which had
gcc and Sun's C compiler. On the Suns, the Sun C compiler produced
binaries that were about 30-40% faster than gcc.

Also, gcc—on Sun/Solaris and on Intel(or AMD)/Linux—takes very little
advantage of advanced architectural features. For example, gcc typically
does not generate MMX instructions, and it never generates 3DNow or
SSE instructions. On Sun, gcc does little to take advantage of Sun's Visual
Instruction Set. Under Windows, Code Warrior CAN issue MMX and 3DNow
instructions, and Visual C can issue MMX instructions. Moreover, both
Code Warrior and Visual C have customization settings to take advantage
of Pentium and Pentium II (and now, probably Pentium III) architectural
features. Code Warrior can also generate code that takes advantage of
K6-2 architectural features (features besides only 3DNow!). Therefore, we
believe that it is unlikely that gcc is generating code which is closely
targeted to a specific architecture—at least, the code would not be
expected to be targeted as well as Code Warrior and Visual C since those
two can optimize for the specific architecture. Therefore, we believe that
Linux is indeed likely to offer a more efficient execution environment than
Windows.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I'd also like to note that we have considered comparing assembly code
generated by gcc and the commercial products, but it's been suggested
to us that the terms of licensure for most of the commercial compilers
imply that “reverse-engineering” activities are not acceptable uses of the
licenses. We felt that comparing assembly code could be viewed as a
reverse engineering activity, and so we have made no attempt to
compare the assembly code being generated by the compilers. Instead,
we've done what we could do, which is just focus on the bottom line and
observe which complete environment produced the best execution
performance.

However, again let me state that you are correct that it's not completely
possible to decouple the compiler and the OS. That was a point that we
tried to make in the article, although possibly we could have made even
more explicit and strong statements on that issue in the article. That's
one reason that we tried to point out that at least the gcc/LInux (or pgcc/
Linux) _combination_ was more efficient than VC/Win or CW/Win. We find
that to be fairly remarkable - a completely freeware solution can actually
operate more efficiently than a commercial solution (especially given the
enormous amount of effort on the commercial products by some very
talented individuals) and we thought that the computing community
needed to be presented with our study's results.

One last word. We did not test this particular application using gcc under
Windows. However, in the past we have compiled other (smaller)
applications using gcc under Windows. We have compared those
applications' performance with the performance of code compiled with
commercial compilers and observed that the commercial compilers
produced faster code. Our experiments were not rigorous, however, and
were on a limited set of examples. Due to those experiments, we thought
that it was unlikely for our application to run as efficiently if it were
compiled using gcc under Windows than if we used something like Code
Warrior under Windows, which we know produces good-performing code.
Also, I believe that our version of DOS gcc is a 16 bit version, and we
thought it would be unlikely to be able to produce reasonable execution
times for our application.

But, I like your suggestion of trying additional compilers, which could
make for a strong case that Linux's computational performance is
superior to Windows. I will try to benchmark the application using gcc
and a few other Windows world compilers. I'll get back with you with
results. If you don't hear from me within a week, could you drop me an
email. I'm pretty busy and sometimes I put things off for a while and then
don't get back to them for some time. A reminder would help me get
around to it quicker.
—Dr. Tim Newman, tnewman@cs.uah.edu

Comments on November 1999 issue

Two observations:

1. PPP:
I suspect that the point of Gerry George's question was missed in the
answer to his PPP question. For purely local access, one can assign a
private IP address to the interface by default. A private IP address is one
selected from the ranges listed in RFC1918 and guaranteed to be
unroutable on the public Internet, such as 192.168.x.x.

If security is not a huge concern and users can generally be trusted once
they provide their name and password to satisfy the ordinary login
process, then one can insert “ipcp-accept-remote” into the “options” file
which will be read by “pppd”, usually in “/etc/ppp”. This tells “pppd” to
accept whatever the remote peer wants to use as its IP address.

If the answerer wishes to force the caller to supply IP addresses for the
answerer's interface, then it should set its own address to 0.0.0.0. Note
that some PPP software, such as Windows Dial-Up Networking, may be
unable to cope with such an answerer.

One should also include the “lock” keyword in the “options” file so that a
dialout does not occur while someone is dialed in. Also, both the dialout
script and “getty” should reference the same interfaces using the same
names, such as “/dev/ttyS0”. The use of the “/dev/cua0” form of
interface name should be avoided for this purpose.

2. Network Time Synchronization:
In response to John Morley's question, it is important to emphasize that
there are different types of network synchronization. First, in some cases,
it is more important that colocated machines be precisely locked
together than that they be accurate relative to some external reference.
Many protocols, such as NFS and Kerberos, benefit from tight local time
synchronization among cooperating machines.

Since real NTP is relatively straightforward to configure and totally free,
there are really no good reasons to rely on “rdate” or “timed” methods.
The issue is not so much absolute accuracy as fault tolerance. All
programs which I know about that use the RFC868 TIME (port 37)
protocol simply query one server and believe whatever they are told.
Personally, I have seen widely used public time servers at major
universities give out junk answers on occasion; I once had a machine set
its clock to February 2037 when such as server began sending all zeroes.

With NTP, attempts are made to measure network delays and apply some
degree of sanity checking to the results returned. In addition, if a web of
NTP servers are configured together, then they will tend to stay closely
locked together around a consensus mean time. NTP also allows using
MD5 and other cryptographic authentication so that only the machines
configured together will be trusted to nudge each other's time.

There are excellent freeware Windows clients which implement SNTP, a
simplified client-only version designed to be used to query a real NTP

server. I recommend Dimension4, a freeware SNTP client for Windows 9x/
NT, available from Thinking Man Software:

http://www.thinkman.com/~thinkman/dimension4/

For extremely casual Unix use, such as might be appropriate for a
desktop workstation, the “ntpdate” SNTP client program included with
the NTP distribution is a much better option than “rdate” or “netdate”
methods.
—Mike Bilow, mikebw@colossus.bilow.com

Reply to your post

Anonymous replied to your post 'my editorial in LJ' at the site: Linux
Journal. The reply was:

Well, for one thing your editorial made me glad I have decided not to
renew my LinuxJournal subscription. There are several very important
reasons why GNOME should be the standard linux desktop, and most of
the have nothing to do with GNOME itself. a) The licensing issues. I know
some people have tried to call this one of after the QPL, but it is definetly
not resolved. Libraries should be LGPL anything more restrictive is a
mistake. The toolkit put under the LGPL is important because it, for all
practical resons, places the ownership of the toolkit in the hands of the
community which means that all who helps develop from can potentially
benefit equally. Another aspect of this is that Linux success is and will
always be about the OS beeing a free platform for all, even for people
who in my opinion makes the wrong choice and release the software
under proprietary licenses (which most of these “open-source” licenses
qualify as.) John “Maddog” Hall, the leader of LI, made a statement in a
interview some time back when asked if he thought all software should
be free, where he answered that the most important thing is that the OS
itself is free. If Qt was to be accepted as the primary toolkit this would no
longer be the possible. (Note, I don't know wether Maddog shares this
interpretation.)

This is the single most important reason to reject Qt, and therefore
unfortuantly also KDE.

b) The language choice. The fact that Qt and KDE is so C++ based,
makes it very difficult to make wrappers for other languages. Which
would lessen the attraction to Linux for many developers. AFAIK the only
wrapper currently available is Perl althought there might be a few others.
Where Gtk and Gnome on the other hand uses stanard C and therefore
already have gotten wrappers for C++, Objective C, Python, Pearl, Ada
and many more. Even more wrappers are under development to support
languages such as Java and Pascal. The use of C as the base language
should be of little consequense for C++ developers with great C++ and
Gtk based projects like Mozilla and AbiWord to show the way.

http://www.thinkman.com/~thinkman/dimension4/

c) The last reason I will give at this point is simply that GNOME is to great
to be discontinued, even though the project was started around a year
later than KDE is has already caught up, and in many areas surpassed
KDE. The last few areas, such as some rough edges caused by product
immaturity, is being taken care of with the 1.0.50 release being readied
these days.

Okay an extra bonus reason: GNOME is the official GNU desktop and
without GNU there would be no Linux. Sincerely,
—Christian Schaller, frostking@linuxrising.com

hurray non-hatemail!

To: Jason Kroll
Keep up the great work in Linux Journal. It was because of your cool
articles that I bought and subscribed to the mag!!! Sincerely,
—Richard Tricoche, richard.tricoche@rpawireless.com

Floppy Formatting

John C. Burgess wrote, in Letters to the Editor, in regards to being able to
format floppies as a non-root user:

chmod 777 /dev
chmod o+w /dev/fd*
chmod 777 /usr/bin/fdformat
reboot

Anyone following this advice can compromise the security of their
system. An explanation follows.
First, there is usually a group called floppy in the group file. the /dev/fd*
files are also usually members of this group. A user can be added to this
group (usually in /etc/group,) and they will have access to the files that
groups owns the next time they log in. This means they will have write
access to the floppy block devices the next time they log in.

So instead of giving global access to the floppy devices, add specific
users to the group which has write access to the floppy devices. Giving
global access to the floppy device allows anyone logged in to change any
of the files or blocks on the floppy at whim.

Don't give global write access to the fdformat program (anyone who logs
in can change the nature of the program and insert bootloader viruses on
the floppies! - a rather hysterical example, that is.) I.e. don't ever type
chmod 777 on any system binaries, libraries, configurations or any other
files.

As for rebooting, your login shell will have to be restarted, but nothing
else should need to be restarted, esp. the kernel. I typically add a user to
the group file, and then I have to restart the login shell before the new
permissions are recognized.

Another piece of errata: I've heard most recently people referring to root
access as `from any directory except root.' This is a misconception. The
root directory, /, is the first mount point in the Linux system, and is the
start of the filesystem path (hence the chroot command.) Root access, as
the user, is merely just another login, only the root user has access to
every aspect of the system, including the running kernel! Don't use root!

For John C. Burgess: whatever `gurus' you asked this about were flat
wrong, but the solution you came up with, while testimonial of the
flexibility and power of Linux, was probably the worst solution you could
ever force on yourself in the long term.
—Christopher Rhodes, christohper@evergreen.net

Correction (?)

In your reply to “Memory Error, Parallel Computing” in the October issue,
one possibility for the first question was overlooked. Some systems (like
Compaq's 9546) limit the amount of memory reported to the kernel to
slightly less than 16M. A simple fix is to use the boot option:

mem='XXM'

where XX is the amount of memory installed in the system.
—Kevin, kevin@obone.net

Word Perfect 8 for Linux is unusable

I just downloaded and installed Word Perfect 8 for Linux on a RedHat 6.0
system. This product is not ready for prime-time.

The download and installation instructions were, on some points, vague,
and even misdirecting. This is not good.

More importantly, all application graphics show as garbled
checkerboards, making the Word Perfect 8 application unusable. Even
more importantly, according to tech support, this is the behavior of the
commercial product, and they say they have no idea what the cause is or
how to fix the problem.

I was hoping to find a familiar word processing application for my Linux
oriented clients, but I certainly can't recommend WP8.

I'm sorry your company is presenting applications for the Linux operating
system in this light, since I experience a superior level of reliability with
most Linux applications. You can see what this says about Corel, of
course.
—James Feeney, james@topaz.nurealm.net

I would greatly appreciate your advice. (fwd)

To: Lydia Kinata
You have my dream job, I dream of making layouts for a magazine. I plan

on Majoring in Graphic Design and Advertising, with a minor in Business.
My only problem is that I don't know where to go to college, and I don't
know if those are the right majors and minors. I would greatly appreciate
any of your advice.
—Magoo25@aol.com
Well, the San Francisco School of Design has a great reputation in the
business, as does the Rhode Island School of Design. Other than that,
most universities will have some kind of design program, and there are
smaller specialty schools. We have a junior designer here in the office
who just graduated from the Art Institute of Seattle.

Your planned majors sound good, you'll have a broad base there. The
business classes will help if you decide to work for yourself.

My education includes 2 years of Design from the now-defunct Factory of
Visual Arts in Seattle. I can't say I learned anything relevant to doing
magazine layout there, other than general design concepts. My computer
design and layout skills are entirely self-taught, and I'm learning all the
time. I *can* say that you should plan to become an expert at Adobe
PhotoShop, Illustrator and InDesign, as well as at Quark Xpress. Beyond
that, some CAD or 3-D Rendering software would be really helpful.
Hopefully some or all of these applications will be available for Linux
soon.

And, most importantly: a lot of design schools teach nothing or next to
nothing about real-world design for print. Learn how to scan art, set up
graphics for print, determine the correct file format to use, trap, and do
color separations. You'll make mistakes as you gain professional
experience, but try to avoid the “oops, that won't print” or the “oops, I
don't know how to plan for output resolution” mistakes that happen to
new designers. Also, learn to make your printer your friend (not your
Epson or HP, rather the press man at the print house). You can learn
more from a good pressman than from almost anywhere else, and a lot of
designers don't realize how much time and money can be saved by
talking to the pressman before beginning a design.

Well, that's it. Good luck!
—Lydia Kinata, info@linuxjournal.com

Correction to “Chosing the Right Commands” in the Oct Linux Journal

I read the question posted by Mark Foucht in regards to mounting CDs in
your October issue. The answers given in regards to how to share the
mounted images were correct, but one detail that was left out was HOW
to get those images so that they could be shared. I wasn't sure if Mr.
Foucht's question was more about how to actually make/mount the
images, or how to share them.

To make/mount the cd images:

• The kernel on the box that will be sharing the images will need to
have support for the loopback device either compiled as a module,
or compiled into the kernel

• This machine will need to have the the /dev/loop* devices created if
they do not already exist. This can be done by going to the /dev
directory and issuing a “MAKEDEV loop” command.

• The loop.o module will need to be loaded with lsmod if it was
compiled as a module. On my Mandrake 6.1 system this module is
located in the /lib/modules/2.2.13-7mdk/block/ directory. If you did
not compile the loopback support as a module, you will need to
install the kernel, re-run lilo and then reboot to activate the new
kernel.

• You will then need to create the iso image of your CD by mounting it
and using the mkisofs command. For example:

mkisofs -r -o cdrom0.iso /mnt/cdrom

will create the file cdrom0.iso with Rock-Ridge extentions in the
current directory from the filesystem mounted at /mnt/cdrom.

• Once this is done, you need to associate the a loopback device with
the ISO cdrom image that you've created and then mount it. To do
this for the iso image “cdrom0.iso” at the mount point /mnt/
cdrimage0 this is done by:

losetup /dev/loop0 cdrom0.iso
mount -t iso9660 /dev/loop0 /mnt/cdimage0

• To umount the image you need to issue the commands

umount /mnt/cdimage0
losetup -d /dev/loop0

I hope this, along with the answers supplied will give Mr. Foucht a more
complete answer to his question.
—Steve Fuller, sfuller@fuller.des-moines.ia.us

Pictured

hello,
there are two corrections to the picture on page 14 of your october
magazine.

1. as could be easily seen the text should be Pictured (from left to
right) are Robbie “maddog” Honerkamp, Steve “maddog” Lewis, Jon
“maddog” Hall, Greg “maddog” Hankins, Antoni “maddog” Dabek,
and Reg “maddog” Charney.

2. as none of the guys has a proper shirt and no suspenders are visible
so none of them is a real unix guy.

—engelbert gruber, engelbert.gruber@ssg.co.at

Is KDE the Answer?

Hello,

I just read your article on LJ issue 66, and I would like to give my opinion
on it. I realize you will get plenty of “opinions” about it, so I'll try to be
short, even if it's a complex matter.

The first thing I thought, trying a KDE beta some time ago, was “oh!
Finally a decent window manager!” but I'm sure this can be only a so
personal point of view, maybe because I've been using Windows more
than X-Windows; after all this can be the thought that so many ones have
had. One of the major killers to Linux diffusion, in my humble opinion, is
after all it's appeal: you can do wonderful things with it, but users will
have more troubles configuring /etc/printcap than a GUI equivalent. The
point you raise, about not skilled users to think they gained “computer
literacy” is after all sadly true. I found so many small ISP, and sometimes
even small informatics departments in schools, having a SysAdmin who
didn't even protect TCP ports like fingerd to outer world, giving away full
users' names. From my point of view these guys are Windows NT
administrators that just discovered Linux, and when they succeeded with
their first internet connection started thinking they could “master the
internet”. But this example addresses something that's not mentioned in
your article: the level of literacy required by a computer user.

Your words appear more a crusade toward the pureness of computing,
than pointing to the users' lack of skill. I've heard and read similar things
before, and it's so sad to see that what's presented as an “open
movement” after all wants just to be a close community of experts:
unless you are dreaming of a world where everyone knows the most
about operating systems.

And that close minding on open software happens, ironically, even in
teams like the KDE one, let me tell a short story. When the KDE was out
as a Debian package I installed it, and found that the FHS adopted was
giving major troubles trying to configure and compile older software,
even if there was a 'configure' script made with autoconf. I contacted
Stephan Kulow, the maintainer of the Debian packages, and he (kindly?)
answered that he wasn't not susrprised an Italian like me didn't
understand about autoconf, and he declared the argumentation over.

So I consider such comments as a lack of reality, because the daily users
of a computer, like people doing just word processing, or charts and
invoices, can't be expert users of an operating system. And they will
never be, considering how fast software products are evolving. Then of
my questions is: are we cutting out 90% of computer users just to feel
the ones who hold the real power of computing? If this is the purpose of
the open source movement then I don't even want to be in it, no thanks. I
don't want to be using an operating system that discriminates what users
are good or bad ones: wasn't that a prerogative of the already
estabilished commercial OSes?

I keep seeing software produced by wonderful programmers that has a
hard to use interface, hard to configure, and in the end justified as “only
for real computer people”. This is crazy, keeping things hard to use only
for a small number of adepts. There's nothing you can call “open” in all
this.

I'm developing embedded systems for more than ten years, designing
them from hardware up to high-level system interface. With all this I
mostly worked with C language, and a lot of assembly programming on
so many microprocessors, and that lead me to keep liking more C to C+
+, because on small systems software has to be predictable with
memory usage and real time response. Despite all this, another thing
that I thought looking at how KDE is programmed made me think “Hey,
this is how Windows should have been made”.

If you want to make a new world (since we already have one running),
you have to get your hands dirty with something, and you can't ignore it.

I really don't understand what is making “internet safe again”: using KDE
leads to making internet unsafe? Maybe it's because I'm european, so I'm
not as close minded and bigot as many americans I see, after all we had
a different history, but... I'm really not the kind to go out with a sign
saying that the end of the world is soon to come, or asking for a holy war.

Ok, armed with console applications you can do more than with a GUI,
maybe even I can do a little magic with it, but why the heck has _any_
Linux user to do so? Should it be one of those proof of adultness to
achieve like in a primitive culture?

You address a real problem with things like paper size treated to be A4
instead of 'letter', that's something for developers to fix. I know very well
that kind of problem: I've been fixing for many years software that was
using 'letter' instead of A4, and inches instead of centimeters. So this just
shows that can exist blind programming on both sides of the pond.

So you don't see any progress in '99 programming compared to '76 one?
I'm not surprised. Can't see any way you could.

One final note. Linux Journal has now a better appeal, with more colored
pages, better organized pages and sections: doesn't it make readers
think they read it better, while this is totally wrong? I can't see how a
publisher did let this happen, as we know that in the end leads guys to
think they know how to manage a magazine (after they badly drove their
car all the way to come telling you, of course). Luckily the magazine has
rare spots of this catastrophism in it, otherwise I wouldn't have a good
reason to keep being a subscriber. Open your mind before you open your
software source, or you will give for free something that no one needs.
—Lou Cyphre, LouCypher@cheerful.com

Floppy formatting

I saw your comment about floppy formatting in the October issue of LJ.

In fact, the following is what I did (uh, back in 1995):

• create a “floppy” group; put the users you trust in that group
• chgrp floppy /dev/fd*
• chmod 660 /dev/fd*

Note the following:

• a “floppy” group is used (MAKEDEV does this by default!)
• /dev/fd* devices should have 660 permissions, not o+w (world-

writable) (unless you don't believe in “Murphy's Law”)
• a reboot is *not* necessary

Even if you don't use a “floppy” group and just o+w the devices, a reboot
is still not necessary :-)
Regards,
—Ambrose Li, acli@acli.interlog.com

Is KDE the answer?

In your October 1999 editorial, you mention that KDE being configured
for A4 paper size by default as a problem, even going as far as
considering it a bug (though you _do_ point out it can be recompiled
otherwise).

May I recommend that you do what's right and upgrade towards this
world-wide standard format, instead of perpetuating that old, deprecated
remnant of American industrialism know as US Letter?

The DIN paper formats may have started in Germany, but they have now
become a world-wide standard, not only in Europe but also in Africa, Asia
(except Japan) and South-America.

The standard itself is rather clear and logical and it includes just about
every kind of stationary out there: paper, envelopes, business cards,
invitation cards, passports, ID cards, etc. etc.

Like the metric system, the DIN stationary format is one of those
standards America really ought to upgrade to. The question is not why
but when, as both standards have become unavoidable.

Could Linux users lead the way, by implementing the DIN formats and
adopting them from now on, even in America?
—Martin-Eric Racine, q-funk@intellitel.com

About “Is KDE the Answer?”

Dear Mr Hughes,

I am probably about the 999th person to protest to you about your
editorial “Is KDE the Answer?” in the most recent LJ. But I hope I can get
your ear nonetheless.

You start the editorial with two questions: “Is looking like MS Windows
good or bad?” and “Is KDE a better answer than GNOME?”

You spend half the editorial arriving at an answer to the first question
with which I agree: “It depends.” For certainly some people, fresh in out
of the wilderness, will like to have a Windows-like interface, for a while
anyway. Whereas others will want to put childhood behind them.
Fortunately everyone can have what suits them.

But of course it is the second question that is bothersome. It reminds me
of a similar question: “Is emacs better than vi?” Haven't we all learned
that this kind of question is silly and irritating?

Don't you value competition? don't you see the benefits that ensue? to
name just one example: would Troll Technologies have modified their
license for qt if they, and the KDE community, hadn't felt GNOME's
breath at their backs?

To try to pick a “winner” between KDE and GNOME is like trying to pick a
winner between emacs and vi. It is IMHO silly and, worse, unproductive.
Let's have (at least) two wonderful editors, and let's have (at least) two
wonderful windowing environments. That is the way for Linux and Open
Source to make progress. That is what will benefit us consumers the
most.

For the record, I am a charter subscriber to LJ, which I love, and: my
window manager of choice is fvwm.

Best wishes,
—Alan McConnell, alan17@wizard.net

Learning Python review in last LJ

To: Phil Hughes
I just wante to write and let you know how much I agree with your review
of Learning Python. I haven't actually read the book however, I just tried
to learn python by it's predecessor. I'm glad you found the new book
enjoyable and useful.

I started trying to learn Python from 'Programming Python' and quickly
got bogged down. That was last Christmas. Recently, I picked the idea of
python again, and came to a miraculously useful conclusion:

The OOP stuff doesn't matter until you want it.

When I started trying to write scripts as ordinary, straight through
procedural stuff, just like my perl and ksh scripts, it just popped straight

out! I was converting my perl scripts over and they became instantly
more readable! I am now far more impressed with Python than I ever was
reading the 'PP' book, even though the stuff in there is very interesting.
Combined with Python's large library of Very Useful Stuff, you can just
get on with writing useful scripts, which I suspect is exactly Guido
vanRossum had in mind.

Of course, once you've spent a long time with it, you start to get a better
feel for the OOP stuff. Right now, I'm just going over the 'PP' book again,
and it's making more sense this time around. But it's not the best of
introductions to a very lovely and gentle language.

Anyhow, I'm glad to see somebody else enjoying Python for what it is.

Many thanks for LJ; I've been subscribing since issue 9 and look forward
to every issue.
—Dominic Mitchell, dom@myrddin.demon.co.uk

Is KDE the Answer?

I'm not going to strain Phil's flame-proof suit :-)

Still, I would like to offer some thougths to his article in the October issue
of Linux Journal. Well—is KDE the answer? Yes, it is. Is GNOME the
answer?

sure. Is Python the answer? Of course! Is Perl the answer? How could you
think otherwise. GCC? Egcs?. You name it.

I don't tend to see the diversity of solutions and approaches in the free
software/open source world as a liability, but as an asset. A rather
important one. In the metaphor of evolution (sometimes an overstrained
metaphor, I admit), this diversity is the big genetic pool which ensures
adaptability to changing environments. And environments do change in
this field.

Besides, in this FS/OSS world, much of the development is fun-driven.
The idea is that you are much more productive if you really enjoy what
you are doing. There are those (I'm one of them) who shriek in horror at
the idea of programming in C++, don't like particularly Python and are
comfortable with the object models of Perl or Lisp. I'd rather go through
the contortions of doing “more-or-less-kinda-OO” programming in C than
“real-OO” programming in C++ for example. There are those who cry in
disgust at this very perspective. A rich ground of tools and approaches
will do much more to harness the energies of all of us.

I do hope that things get constantly reinvented to some extent. You can't
afford to do radical changes to ext2, for example. It has to be a rock-solid
basis for many production environments out there. But perspectives
would be very dull without ext3 or reiserfs, for example.

The most important thing is to work on interoperability, and the Gnome
and KDE folks seem to take this seriously (the last time I looked into their
mailing lists, that is). It should be made as easy as possible to write
applications which fit as well as possible into *both* environments. Then
we get something the closed-software world hasn't: cross-fertilization.
This is a concept which has been very successful in natural evolution—it
might work for us as well. The easier it
is to “steal” software from each other the better.

So to offer my personal answer to your question: “Yes, definitely, all of
them”. P.S. —again I enjoyed your magazine from cover to cover.

Thank you for the good work.
—tomas, tomas@aura.de (tomas zerolo)

Linux after CP/M

I am 46 years old and stopped programming when Big Blue came along. I
used to work with the then available 8 - bit machines and hexadecimal
coding. Now I decided to jump back into the programming area and
started with the installation of RedHat 6.0.

I must say it is like being reincarnated for the world seems to be
dominated by C++ and Internet. While instaling RedHat I noticed that
one should have benefits of an education in LAN or some kind of
Networks.

It also seems to me that the package will sell but that a lot of buyers will
knock off. The road to completion is hazy for one will never be at ease
and done. I live in the Netherlands, my e-mail adres is

groetjes,
—Robert Vencent Racam, evergladenld@planet.nl

Letter to the Editors

Two articles in October's issue of the Linux Journal concerned me a little.
First of all, I have to find issue with the rather unfair article that
Mr.Hughes' wrote in regards to the KDE/GNOME issue. First of all, QT is
still not free. Nope. It's semi-free, it's sorta-free, but it remains a
restrictive license, and the proliferation of these semi-free licences is
potentially quite damaging.

We all appreciate the efforts Troll has made in order to loosen the license,
but having the entire Linux desktop controlled by a for profit company is
no different then Windows. If GNOME was the standard, we'd be able to
have a wealth of applications, closed and open. However, with KDE the
standard, commercial vendors will be less inclined to port if they have to
fork over a large sum of money.

Mr.Hughes has condemned the GNOME project even though it has had far
less time to reach stability. Recent releases, like the 1.0.53 builds have

shown remarkable progress and I use it daily, under fairly strenuous
conditions. By his thinking, we should go with whatever works, even if it
doesn't satisfy us. If Linux believe that, we'd all still be running Windows,
and the guys at Red Hat would have far less money.

While it's not crucial that all the applications are free, it it crucial that the
underlying system be free. QT is not truly free, while GTK and GNOME
are.

On another note, I'd like to mention to Mr. Kroll that Code Warrior works
well on other distributions. I'm a Stampede developer, and I use Code
Warrior frequently. It was a simple matter of running alien, and I had a
working copy of Code Warrior.
—Aubin Paul, outlyer@stampede.org

Article Idea

I think somebody should do a good article/tutorial on how to disable the
many network services that users often don't need. I recently learned
how to do this and by taking out nfs, mountd, sendmail, portmap, and
probably others I can't recall, I have made my computer faster and more
secure. My bootups are noticeably faster, the memory requirements of
my system have been dropped by several Mb and I don't have to worry
about security holes in all those daemons I don't understand.

I suspect that many people who, like me, use their linux boxes as
workstations and not servers could benefit from an article telling them
that this is OK to do. For people in my kind of situation, all that is really
needed in terms of network servers is ftp and telnet. I've known for a
long time that this is all I wanted to do, but I wasn't sure which daemons I
could safely disable or the best way to do it, for that matter.

Just an idea,
—Colin Durocher, conan2@home.com

Someone has—look for it in our December issue. —Editor

Please Read: suggestions for LJ

Ms. Richardson, Mr. Searls,

I have been a subscriber to Linux Journal for a few months now, and a
reader for a long time. I have some general comments to make with
regards to the direction of the magazine that I hope you will consider. Let
me say that I am only forwarding these suggestions to you because I
would like to think I can hold your magazine to a higher standard than
other linux magainzes that have jumped on the bandwagon.

Firstly, I would appreciate it if the magazine moved away from such a
position of 'hollow' advocacy. Obviously I don't mean you should stop
promoting linux - its your business, but it seems that the magazine is
always treating me as an NT user that isn't convinced of the usefulness

of linux. This theme is so pervasive in your magazine that it even gives
way to rather questionable quotes used to bolster your advocacy:

“...Since I have to work with NT for political reasons, I just cope with it.
But I know if we could see the source, we could probably fix the problem
pretty fast.” Windows NT is millions of lines long. Even if it was open
source and well documented, it is *highly* unlikely that a single user, not
deeply experienced with the architecture of the OS, could *ever* locate
and repair the errors in question. Whether open sourcing NT would have
prevented such bugs from appearing in the first place is another issue,
but suffice to say, all of the open source operating systems have
longstanding bugs, code availability nothwithstanding!

Secondly, I would like to see more meat in the interviews. This month's
issue featured an interview with Linus Torvalds - a great opportunity to
get the inside scoop on future developments, but instead we get a
barrage of incredibly uninformative, almost insipid questions about his
personal life. I know this last statement is rather rude sounding, but I
cannot express to you how disappointed I was with the lack of content in
this interview, which I was really looking forward to.

Thirdly, I would like to see more criticism of products and software. Some
open source software is good. Some is terrible. I think users need to know
about both kinds. As for hardware, I was disappointed that this month's
review of VAResearch computers failed to mention cost as a criterion of
purchase. VA boxes are historically overpriced by a significant margin,
and your readers deserve to know that nearly identically equipped PCs
can be had for much cheaper. I understand they advertise heavily in your
magazine, but that should not preclude an honest appraisal of their
products.

Other than that, “Best of User Support”, “New Products” and “At the
Forge” continue to be excellent columns. I hope Mr. Lerner continues
writing for your magazine for the forseeable future - his articles are
extremely detailed and informative.

Thanks for your time
—Brad Clawsie, brad@yahoo-inc.com

“...Since I have to work with NT for political reasons, I just cope with
it. But I know if we could see the source, we could probably fix the
problem
pretty fast.”

Funny, I didn't see it as Linux advocacy, hollow or otherwise. I saw it as a
way to show how the software industry is changing from one we
understand in terms of its suppliers to one we understand in terms of its
builders. The builder I quoted was remarking on the prefab nature of NT.
The world of software, like the world of building construction, has plenty
of room for all kinds of construction materials and techniques, including

the relatively prefabricated and closed offerings from Microsoft and other
software suppliers.

But he didn't say that, and I didn't make it sufficiently clear. He did slam
NT, however, with a statement you did well to criticize. And you're not the
only one to make the same point. In fact, Craig Burton has been
pounding on similar issues for some time. Witness this interview: http://
www.linuxgazette.com/issue41/searls.html .

The other points you make are also helpful. And believe me: we do
appreciate them. Regards,
—Doc Searls, doc@searls.com

Comment on “Microsoft Lamblast Linux”

In response to Microsoft release about 'Linux'.

We know that 'Salespeople' will spend more time lambasting a
competitor with innuendoes instead of facts.

The best response, of a dignified nature, is to publish the results of
comparisons from this months Linux Journal. This article list the test
conditions and the results. You don't see Microsoft doing the same. Just
muddy the waters with trash (verbal).

We in the Linux community should feel proud of the high priced
advertisement and acknowledgment from such a large corporation.

I myself just laugh at the trash coming out of Redmond, but you don't see
them doing a comparison of their system (Windows or NT) against Linux.

I believe, the best way to respond to this trash, is to not say a word (no
flaming comments) and let the educated people of this world see how
childish a large corporation can get. This corporation must think the
people of the world are just a bunch of dumb people and cannot see
through the trash.

Just think of all the free publicity Linux is getting. I say 'Thank you,
Microsoft for your comments about Linux. Keep it up.' They are only
making themselves look like a bunch of fools.
—Dr. Fred Lerssen, flerssen@worldnet.att.net

Hurt by Linus interview (Nov 99)

Marjorie;

I was hurt by your interview with Linus Torvalds in the Nov 99 issue of
Linux Journal.

As linux user and person of faith, I am interested in Linus' spiritual health.
I am not interested in having 4 questions, 3 with a decidedly anti-

religious slant, give air to the same tired excuses people use to not
participate in corporate worship.

The article was to give the reader a picture “of who exactly Linus is”. But
the effort changed mid-stride from a personal glimpse to slamming those
who are faithful.

“Religion is a personal matter”. Linus was correct. Some time ago you set
a journalistic standard to avoid certain uses of language because you felt
it important to remain sensitive to other's beliefs. I ask that you continue
that stand. Report and comment on Linux, and the state of open source
software in general. Please avoid offending readers with comments that
have nothing to do with the magazine's topic or scope.

Sincerely;
—Leam Hall, leamhall@rcn.com
An LJ reader since Aug 95.

Sorry, you were hurt. I didn't think we spent much time on religion and
didn't consider it offensive. Even if it was the “same tired excuses”, it is
what Linus beieves. I don't think either of us thought we were slamming
the “faithful”. Why would I want to do that? I am one of the faithful.
—Marjorie Richardson

Complaint Department

I would like to register my complaint concerning your recent interview
with Linus Torvalds. It seems to me there was an inordinate amount of
space devoted to Marjorie's and Linus' bashing of “organized religion”.

As a journalist, I thought this showed questionable ethics and poor
editing on your part (at times, it almost seemed as if Marjorie was egging
him on).

As a Christian, I was offended that a magazine to which I subscribe for
news and information relating to a computer operating system should
devote so much space to bashing Catholicism, religious practices (such
as tithing) and beliefs that I hold dear. So, Linus doesn't like organized
religion. How about sticking to the topic in the future?
—Thomas Long
tlong@billsoft.com

Getting to know Linus and what his beliefs are in many areas was the
topic.
—Editor

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFRONT

Doc Searls

Issue #68, December 1999

Stupid Programming Tricks, LJ Index and more.

LJ Index - December, 1999

1. Number of hosts on the Internet in December, 1969: 4
2. Number of hosts on the Internet in August, 1981: 213

3. Number of hosts on the Internet in October, 1989: 159,000

4. Number of hosts on the Internet in January, 1992: 727,000

5. Number of servers on the Web surveyed by Netcraft in September, 1999:
7,370,929

6. Number of Apache servers on the Web: 4,078,326

7. Apache's share of all web servers: 55.33%

8. Apache sales: $0 US

9. Number of web pages with the term “brand”: 2,302,060

10. Number of web pages with the term “branding”: 183,510

11. Number of web pages with the term “brand name”: 114,262

12. Money spent on advertising worldwide in 1998: $200.3 billion US

13. Money spent advertising Apache through all of time: $0 US

14. Number of web pages with the phrase “Apache”: 286,619

15. Estimated consumer purchases over the Web in 1999: $31 billion US

16. Estimated business purchases over the Web in 1999: $80.4 billion US

17. Estimated annual consumer purchases over the Web by 2003: $177.7

billion US

18. Estimated annual business purchases over the Web by 2003: $1.1 trillion

US

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Sources

• 1 to 4 from Matrix Information and Directory Services
• 5 to 7 from Netcraft
• 9 to 11 and 14 from AltaVista, September 21, 1999
• 14 excludes pages with the word “native” or “Indian”
• 12 from McCann-Erickson
• 15 to 18 from International Data Corporation (IDC)

Deplugging the Net

You almost certainly think of the Internet as an
audience of some type—perhaps somewhat captive. If
you actually had even the faintest glimmering of what
reality on the Net is like, you'd realize that the real unit
of currency isn't dollars, data or digicash. It is
reputation and respect. Think about how that impacts
your corporate strategy. Think about how you'd feel if
a guy sat down at your lunch table one afternoon
when you were interviewing an applicant for a vice-
president's position and tried to sell the two of you a
car and wouldn't go away. Believe it or not, what you
want to do with the Internet is very similar. Just as you
have a reasonable expectation of privacy and respect
when you're at a table for two in a public place, so too
do the users of the Internet have a reasonable
expectation of privacy and respect. When you think of
the Internet, don't think of Mack trucks full of widgets
destined for distributorships, whizzing by countless
billboards. Think of a table for two.

—@Man, from “Attention Fat Corporate Bastards!”
www2.ecst.csuchico.edu/~atman/attention-fat-
bastards.html

Whoa, Nettie!

Alan Greenspan has stated that the Internet is the engine “driving” the U.S.
economy. This engine has been working hard for a number of years, doubling
and redoubling. But what happens when it begins to slow down?

This is not an idle question, as data in Matrix Maps Quarterly 601 (published by
MIDS, http://www.mids.org/) demonstrates. The sky may not be falling, but
growth is definitely slowing.

Comparing the resulting per-country host data for the period between January
and July 1998 and 1999 reveals an interesting feature of the Internet. For nearly
a decade, the number of Internet hosts doubled every year. From 1985 to 1997,

http://www2.ecst.csuchico.edu/~atman/attention-fat-bastards.html
http://www2.ecst.csuchico.edu/~atman/attention-fat-bastards.html
http://www.mids.org

growth was 2.176. The rate of change is now 1.5. The graph outlines the growth
rate for 1969-1999, then extrapolates out to 2002.

In some ways, the more things change, the more they stay the same. The total
number of Internet hosts continues to grow, but at a somewhat slower pace.

RIPE data, published monthly, shows that the European growth rate has been
falling off as well.

That this would happen should surprise no one; clearly, as any area begins to
become saturated, growth slows.

—Peter H. Salus, info@linuxjournal.com

Overheard

Do you want to spend the rest of your life selling
sugared water, or do you want a chance to change the
world?

—Steve Jobs to John Sculley, 1983

C'mon Steve, do you want to go on selling colored
plastic all your life, or do you want to change the
world?

—USENET posting to Steve Jobs, 1999

jbum rocks

Jim Bumgarner's Public Opinion Research Project at www.jbum.com/jbum/
public_opinion.html takes the Sucks/Rules-O-Meter concept to its extreme. His
site lets you poll the Web (through www.altavista.com) for the negative and
positive adjectives of your choice. Here are a few of the polls displayed at the
site on September 23, 1999.

GAMES FOCUS—Weiqi Baduk Igo Go

a robot playing a board game or striking a thinking pose?

From its origins in China, Weiqi has spread through Asia and indeed throughout
the world. In Korea, where it is most popular, it is known as Baduk, while in
Japan and elsewhere, it has the familiar name Go. Its rules are simple and easily
acquired, yet the mathematical and logical complexities are vast and largely
unfathomable. Indeed, some say Go can be as demanding and subtle as art or
science, while the scope for personal expression is such that it is said one

http://www.jbum.com/jbum/public_opinion.html
http://www.jbum.com/jbum/public_opinion.html

cannot hide his personality on the Go board. So what is your Linux box's
personality like? Go find out!

The board is 19x19; the stones are round. Everything else is just numbers, a
dendrite path which I would vaguely estimate to contain a number of paths
somewhere around 361!/111! (if we assume 250 moves per game). Navigating
this path well has proven to be an impossible task for computers. Still, in the
post-Deep Blue world, Go may be both the most promising and the darkest
frontier in artificial intelligence gaming. From chess, we developed heuristic
searches and witnessed the power of brute force when we trimmed our search
trees, not to mention the parallel processing research which occurred during
the construction of Deep Blue. The subtlety of Go, which is less materially
dependent than chess and has more branches in the dendrite with a less clear
objective (territorial acquisition rather than monarch hunting), has rendered
brute force largely ineffectual, and we have to resort to pattern recognition and
analysis and strange algorithms to make a computer think like a human. What
we learn from developing Go software could expand our knowledge base of AI
theory and techniques a great deal. The computer chess authority Hans
Berliner remarked that Go “may have to replace chess as the task par
excellence for AI.” Fortunately for us Linux enthusiasts, there is some very high-
quality Go software floating about, free of charge and with the source code, of
course.

If you have long been frustrated by GNU Chess, you can get back at the GNU
Project by beating GNU Go—well, maybe not. While computers are relatively
worse at Go than at chess, GNU Go is not a weak program. In fact, it recently
took second place at the 1999 U.S. Computer Go Championship, winning the
“Best New Program” award as well. It has a text interface, but since it
understands Go modem protocol, it can also be played against other programs
or with the Cgoban interface. Check out www.gnu.org/software/gnugo/
devel.html if you're interested in playing or contributing to the project.

http://www.gnu.org/software/gnugo/devel.html
http://www.gnu.org/software/gnugo/devel.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff1.large.jpg

Figure 1. GNU Go for Console Enthusiasts

Baduki, by Jim Laebum (who goes by Artist), is free Go software with its own
graphical interface. The program is actually quite good, and the interface is
nice. The board seems to have come from the GIMP's wood pattern (I suspect,
since I did this myself for Go software I was writing). The software allows you to
set handicaps and play levels, and the interface scales to whatever window size
you like. Additionally, Baduki can give its rationale for moves, show its thinking
process and display alternate moves. Baduki understands GMP (Go modem
protocol); thus it can play on IGS (Internet Go Server), NNGS (No Name Go
Server) or against another program such as GNU Go. The Baduki home page
lives at soback.kornet21.net/~artist/baduk/baduki.html.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff1.large.jpg
http://soback.kornet21.net/~artist/baduk/baduki.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff2.large.jpg

Figure 2. Jim Laebum's Baduki

CGoban (Complete Goban) by William Shubert is the Go equivalent of xboard. It
allows users to play Go against programs (such as GNU Go or Baduki), or
against other players on the Internet Go servers. In addition, CGoban allows
one to examine SGF files, that is, game records. The interface looks quite nice
(the standard wooden board with black and white stones), scales to whatever
size you like, and should run on all UNIX systems with X. CGoban will
automatically connect you to the Go server of your choice with a simple mouse
click. The home page of CGoban is http://www.inetarena.com/~wms/comp/
cgoban/.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff2.large.jpg
http://www.inetarena.com/~wms/comp/cgoban
http://www.inetarena.com/~wms/comp/cgoban
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff3.large.jpg

Figure 3. CGoban on the Internet Go Server

The Internet Go Server is the on-line meeting place for wired Go enthusiasts the
world over. You can telnet in and play with a text interface, or use a graphical
interface like CGoban. IGS is similar to the chess servers, with the typical
commands applying like who, match, observe, kibitz, tell and shout. I find the
atmosphere to be friendly enough, though less talkative than the chess
counterparts. Also, blitz Go seems to be less popular than blitz chess, and as for
lightning Go, I don't know. (Lightning chess is one or two minutes per game, a
rather difficult schedule for Go.) If you want to check out IGS's well-designed
web page (available in English, Chinese, Korean and Japanese), go to http://
igs.joyjoy.net/. Or, if you want to go directly to the server, use
telnet igs.joyjoy.net 6969 (yes, port 6969). There are a few other Go servers
wandering about, No Name Go Server (NNGS) being one of the more popular.
CGoban already knows the addresses and will connect you automatically.

Whether Go interests you on a playing level or a programming level, many on-
line resources are available as well as software and many excellent books. A
visit to your local bookstore or gaming shop should provide you with ample
opportunity to foster an obsession (assuming, of course, that you don't find it
boring). Likewise, if AI is your thing, Go is in need of creative solutions and has a
lot of scope for truly clever, brilliant thinkers. If you become outstandingly fond
of Go, you may even want to check out your local club, which would probably
be overjoyed to have a new member. Happy Going! (Next month, something
more violent...)

—Jason Kroll

https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3722ff3.large.jpg
http://igs.joyjoy.net
http://igs.joyjoy.net

STUPID PROGRAMMING TRICKS→SCROLLTEXTS

Last episode, we initialized console graphics (at great risk to our system's
health) but we didn't do much afterwards. Now it's time for something truly
impressive, a feat which Microsoft has apparently not yet accomplished—a
smooth scrolltext.

“What is a scrolltext?” you may ask, in particular if you haven't been around on
a Commodore 64, Amiga or PC and names like Fairlight, Red Sector and Future
Crew mean very little to you. Hopefully, you've at least seen the intro screen
from Jet Set Willy. What it comes down to is this: scrolltexts are the most
exciting form of communication ever. Words that glide across the screen, often
advertising the latest release or copy party, complaining about high school
teachers, or detailing unfortunate experiences at the hands of public transit,
usually accompanied by music (MODs) blaring in the background with
animated graphics and the ubiquitous star fields. Perhaps you've seen
Microsoft's screen saver which scrolls words across the screen and noticed it
flickers terribly. It is very simple to fix, so our scrolltext won't flicker; then we
can taunt the Microsofties to fix their screen saver.

The routine is quite simple. We start by initializing three graphics screens: a
physical screen, a virtual screen and a scroll board screen. The physical screen
is the graphics context which will be displayed, the virtual screen is the graphics
context we use as a whole-screen copy to the physical screen. That is, we make
changes to the virtual screen, and when everything's ready, copy it to the
physical screen. The third screen is the scroll board, a virtual graphics context
which will be wider than the physical screen by one character (8 pixels) and will
be only as tall as the font itself (again, 8 pixels). Since we're using an 8x8 font
and a 320x200 graphics screen, we can fit 40 (320/8) characters on a line,
making 41 characters for our scroll board. Once we've set up these three
contexts, we'll use a simple loop to get the letters scrolling. After that, we can
add anything we like: 3-D graphics, dancing animals, star fields or anything else.
Here's the loop:

• Write 41 letters to scroll_board.
• Copy 40 letters from scroll_board to virtual_screen, always copying to the

same location on virtual_screen, but copying from one pixel farther to the
right each time, so that at first we get the first 40 letters, then the first 40
letters minus the first row of pixels from the first letter but with the first
row of pixels of the 41st letter and so on, until we have scrolled 8 pixels
(the width of our current font).

• After each copy of scroll_board to virtual_screen, copy virtual_screen to
physical_screen and hold for a vertical refresh. (This makes things look
smooth and lets us add things later, like the dancing animals.)

• Once we have moved 8 pixels forward in scroll_board, such that we are
copying the 2nd through the 41st letter (instead of the 1st through 40th),
we reprint 41 letters to scroll_board, starting one letter in, such that what
was once, for example, “Hello world welcome to my glorious scroll” would
become, “ello world welcome to my glorious scrollt”.

This routine is fairly simple and requires only a couple of variables: one to keep
track of how many pixels in we are and one to keep track of how many letters
in we are. Also, we want to make sure we don't run out of scrolltext and start
scrolling bits of random memory, which would ultimately lead to a
segmentation fault. While we might prefer to draw each letter individually and
just keep modulating around the length of the scrolltext, we get faster drawing
if we print characters as a string once instead of calling gl_writen 41 times every
time we move 8 pixels. So, leave some blank space at the beginning and end of
your text to ensure smooth wrapping. We could also create the whole scrolltext
as one really long graphic, but that would be cheating.

Once the basic scrolltext is going, we can do all sorts of fun things. We could,
for example, have a sinusoid equation for the y value of where the text is
placed such that it would bounce up and down on the screen, or we could
insert some graphics and possibly call mikmod or playmidi to get some music
going. Compile with

gcc -Wall -O2 scrolltext.c -lvgagl\
 -lvga -o scrolltext

For information on the specifics of svgalib or vgagl, try their respective man
pages. Library functions also have their own man pages. Here's the code:

#include <stdio.h>
#include <stdlib.h>
#include <vga.h>
#include <vgagl.h>
#define VGAMODE G320x200x256
#define FONTW 8 // font width
#define FONTH 8 // font height
#define TEXTL 600 // text length
int main(void)
{
 char d;
 char text[TEXTL]=" Megagreetings from whomever this happens to be! This is wh
 short int text_pos;
 unsigned char pixel_pos;
 unsigned char speed;
 GraphicsContext *physical_screen;
 GraphicsContext *virtual_screen;
 GraphicsContext *scroll_board;
 vga_init();
 vga_setmode(VGAMODE);
 gl_setcontextvga(VGAMODE);
 physical_screen = gl_allocatecontext();
 gl_getcontext(physical_screen);
 gl_setcontextvgavirtual(VGAMODE);
 virtual_screen = gl_allocatecontext();
 gl_getcontext(virtual_screen);
 gl_clearscreen(0);
 scroll_board = malloc((WIDTH/FONTW+1) * FONTW *
 FONTH * BYTESPERPIXEL);

 gl_setcontextvirtual(WIDTH+FONTW, FONTH,
 BYTESPERPIXEL, 8, scroll_board);
 scroll_board = gl_allocatecontext();
 gl_getcontext(scroll_board);
 gl_clearscreen(0);
 gl_setwritemode(FONT_COMPRESSED);
 gl_setfont(8, 8, gl_font8x8);
 gl_setpalettecolor(1,63,63,63);
 text_pos = 0; // text offset
 pixel_pos = 0; // pixel offset
 speed = 1; // scroller speed
 gl_setcontext(virtual_screen);
 for (d=0; d==0; d=vga_getkey()) {
 pixel_pos+=speed;
 while (pixel_pos > FONTW) {
 gl_setcontext(scroll_board);
 gl_writen(0, 0, WIDTH/FONTW,
 &text[text_pos]);
 text_pos++;
 pixel_pos-=FONTW;
 if (text_pos > TEXTL - WIDTH/FONTW)
 text_pos -= (TEXTL-WIDTH/FONTW);
 gl_setcontext(virtual_screen);
 }
 gl_copyboxfromcontext(scroll_board, pixel_pos,
 0, WIDTH, FONTH, 0, HEIGHT-FONTH-1);
 gl_copyscreen(physical_screen);
 vga_waitretrace();
 }
 return 0;
}

This code can be downloaded from ftp.linuxjournal.com/ftp/pub/lj/listings/
issue68/3722.tgz.

—Jason Kroll

VENDOR NEWS

Red Hat, Inc., a provider of open-source Linux-based operating system
solutions, announced that Burlington Coat Factory Warehouse Corporation has
purchased support services from Red Hat for its nationwide Linux deployment.
Under the agreement, Red Hat Services will provide telephone-based support
to more than 260 Burlington Coat Factory stores nationwide (including
subsidiaries). Red Hat will provide ongoing maintenance for customized Dell
OptiPlex PCs and PowerEdge servers running factory-installed Red Hat Linux.
The Red Hat Linux OS-based systems will host Burlington Coat Factory's Gift
Registry and will facilitate all other in-store functions, such as inventory control
and receiving.

International Data Corp. research states that Linux was the fastest-growing
server operating environment in 1998, growing more than 212 percent in that
year alone and capturing more than 17 percent of new licensed shipments of
server operating systems.

Andover.Net announced it has completed extensive hardware upgrades to its
influential Slashdot (www.slashdot.org) and Freshmeat (www.freshmeat.net)
news and resource sites. With a major investment in the IT infrastructure of

ftp://ftp.linuxjournal.com/ftp/pub/lj/listings/issue68/3722.tgz
ftp://ftp.linuxjournal.com/ftp/pub/lj/listings/issue68/3722.tgz

both sites, Slashdot and Freshmeat can now serve the growing Linux
community, without delay, the same news and information that has made
these sites the most popular destination for Linux news and information.

Oracle Corp., a provider of Linux-based database software, and Red Hat jointly
announced that Oracle has certified Oracle8i on Red Hat Linux and that future
Oracle product releases will also be certified on Red Hat as they become
available.

Tripwire joined ISS' Adaptive Network Security Alliance (ANSA), an industry-wide
initiative dedicated to developing and delivering adaptive network security
solutions. Through ANSA, real-time adaptive security capabilities are being
integrated across systems and applications, providing automated responses to
security risks, including intrusions. Tripwire will use the ANSA modules to
integrate Tripwire and ISS products. Any modifications made to operating
system or user files will be detected by Tripwire. Tripwire will then send an alert
to the ISS product set, which will conduct another set of security checks to
monitor and combat the intrusion. More information on ANSA can be found at
http://www.ansa.iss.net/.

KeyLabs Inc., an e-business testing facility, announced that Motorola Computer
Group's (MCG's) SLX2020 network appliance has passed KeyLabs' network
server compatibility tests in support of major Linux operating system
distributions. KeyLabs' compatibility testing showed the SLX2020, the first of
Motorola's recently announced SLX Series of network appliances, to be
compatible with Caldera Systems' OpenLinux 2.2 and 2.3, Red Hat 6.0, SuSE
Linux 6.0 and TurboLinux 3.0.1. KeyLabs' “Linux-Tested” certification results for
the SLX Series may be found at www.keylabs.com/linux/results/motorola.html.

Ariel Corporation, a supplier of open-architecture remote-access solutions for
Internet service providers, announced that KeyLink Systems, a Pioneer-
Standard Electronics, Inc. company, is now offering bundled remote access
solutions for ISPs based on Ariel's PowerPOP architecture. KeyLink Systems
also announced a dedicated sales and support team for the assembly of these
ISP solutions.

STRICTLY ON-LINE

Transparent Firewalling by Federico and Christian Pellegrin presents the
solution to one of the difficult problems encountered when building a firewall:
how to split the existing network without affecting the configuration of the
machines already in use on the network. They do this by using a proxy arp
technique. All the information you need to know about requirements and
configuration can be found here.

http://www.ansa.iss.net
http://www.keylabs.com/linux/results/motorola.html

Kerberos by Cosimo Leipold is an introduction to this powerful set of programs
which give you encrypted connections to TELNET, FTP, e-mail, etc. Mr. Leipold
explains the configuration files and commands needed to give the
administrator complete control of the system.

What Can You Expect? by Denny Fox describes the end-to-end process of
defining and implementing a data collection project that illustrates the use of
Expect, stty, cron, a little C programming, gnuplot and ioctl to the serial device
driver. Learn more about Expect, a powerful tool used to automate UNIX
programs which interact with a user or processes needing a command or
trigger and then return some kind of response. Just the sort of tool System
Administrators need on a regular basis.

Building a Firewall with IP Chains by Pedro Bueno is a very short article which
gives you the basics on using IP firewall chains. Developing adequate security
for your system is one of the most important steps you can take.

Customizing the XDM Login Screen by Brian Lane shows you how to jazz up
your login screen, explaining how to set up XDM, change your background
pattern, randomly display a background image and change your prompt.

The Use of Linux in an Embedded System by Dave Pfaltzgraff presents one
company's solution to a customer problem using Linux and open-source
software. Mr. Pfaltzgraff tells us how to implement the serial interface and
control program and interface with the database, in his case, PostgreSQL.

Porting Progress Applications to Linux by Thomas Barringer is an explanation of
the steps required to port an existing Progress application to the Linux system,
including the advantages and disadvantages of doing so.

Army National Guard Using Linuxby Richard Ridgeway is a look at how a
military war game simulation was ported to Linux workstations. Included is a
comparison of graphic refresh times on different platforms and operating
systems. Saving money and getting high performance are two very good
reasons to port to Linux.

COSOURCE ANNOUNCES COMPLETION OF FIRST PROJECT

The program supermount has been successfully ported to the 2.2 kernel,
implementing all the functionality of Stephen Tweedie's original version. The
project was started on August 11 and completed on September 27 by
developer Alex ... in Russia. This Linux enhancement was cooperatively funded
by several different individuals and coordinated by cosource.com, thereby
proving the Cosource model works! Congratulations to Alex and Cosource! Get

all the details from www.cosource.com/cgi-bin/cos.pl/bid/info/5http://
www.cosource.com/cgi-bin/cos.pl/bid/info/5.

Lineo Proposes Embedded Linux Advisory Board

On September 30 at the Embedded Systems Conference in San Jose, Lyle Ball
and Bryan Sparks of Lineo proposed a group to be called the Embedded Linux
Advisory Board (EMLAB). This proposed body would serve as an advocacy
group, helping Linux to gain greater visibility and name recognition in the
embedded systems arena through activities such as establishing Linux Pavilions
at embedded systems shows and promoting birds-of-feather sessions and
Linux presentation tracks. Other possibilities include:

• Shared software development, for example, a GPL flash-disk file-system
driver. Like Linux itself, such software offers a fundamental basis on which
embedded systems may grow.

• Vendor-neutral comparisons of embedded Linux approaches
• Tracking and publicizing Linux design wins
• Setting standards

Funding would come from corporate sponsorship with complimentary
memberships open to community groups, such as Linux Router Project or
individual developers, via a nomination process.

Lineo hopes to turn EMLAB over to an independent board to be selected soon.

Present at the announcement were Lineo and some of its customers and
strategic partners including Ziatech, Motorola and Intel. The press was
represented by Linux Weekly News and Linux Journal.

Reaction from companies and groups not present was cautious, though there is
support for the idea of such an organization.

Lineo has set up a server hosting an open mailing list and a web site. For list
subscription information, e-mail info@emlab.org. For news updates, visit http://
www.emlab.org/ or stay tuned to www.linuxjournal.com/.

—Dan Wilder

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.cosource.com/cgi-bin/cos.pl/bid/info/5
http://www.emlab.org
http://www.emlab.org
http://www.linuxjournal.com/
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Millennial Musings—Y2K

Peter Salus

Issue #68, December 1999

The whole to-do seems both parochial and silly.

There are many folks who worry about planes falling out of the sky and
civilization ending at 00:00:01 on January 1, 2000.

Of course, this is the date only for Western Christians. For Eastern Christians,
the calendar is shifted by about two weeks. For Jews, it's about 240 years until
the (next) millennium. For Moslems, it's also several centuries. So, the whole to-
do seems both parochial and silly. Also, for computer folk, there's the
realization that the calendar isn't a UNIX system: it doesn't begin with “0”, so the
second millennium must begin on January 1, 2001. (If you think there was a
year 0 between 1 BC and 1 AD, this will be where you stop reading.)

However, there are problems, and they are worldwide. Why? Because over the
past 50-odd years, chips and computers have become ubiquitous. Computers
don't actually think very well. Unlike bookkeepers from the Italian Renaissance
to the present, who used two-digit dates and had no problem computing
interest for 1695 to 1705 when they wrote “95-05”, computers don't really know
how to handle “00.”

So what?

Well, in most cases we just don't know. It appears that the overwhelming
portion of the U.S. power grid has tested okay. But what if a very small supplier
“trips” something? The grid folks assured those of us living in Manhattan in
1965 that a massive grid failure couldn't happen again. There was another less
than a decade later. A few years ago, there was a cascading failure on the West
Coast. So we really aren't sure what will happen.

On the other hand, there are myriad things each of us can test: kitchen and
household appliances with date chips, for example. I tested my VCRs, setting

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the date to December 31, 1999. In the morning, one had the right time, one was
blinking “00:00” at me.

Maybe my coffee maker won't go on, or my bread machine, or the VCR won't
tape the nth episode of something. But none of these is necessary to my life.

I have confidence in the various phone companies, too. They have far too much
at risk not to have checked things out. And I know that most electronic
switching systems are Y2K safe.

Doors with time locks may not be. I don't know whether banks have checked
the locks on their doors and their safes as rigorously as they have checked their
accounting machinery. But I know the New York Stock Exchange is in good
shape, as are the large brokerage houses.

What About Computers?

If you're running UNIX, time doesn't run out for decades; well, at least into the
21st century for Linux. DOS 6 and earlier? Win95? You may be a victim.
Windows 98? Well, according to Agence France Presse last February, the French
Directorate for Competition and Prevention of Fraud (DGCCRF) showed that
Windows 98 and Works 4.5 would be unable to recognize the year 2000.
According to Marylise Lebranchu, the Minister for Small and Medium
Businesses:

The DGCCRF carried out tests in mid-January on
products which might not work after 2000 and we
have proof that Works 4.5 and Windows 98 will not
work. It is extraordinary that a company which is
supposedly at the cutting edge of technology has sold
products which will not work after 2000.

And the Internet?

One of the design basics in the ARPANET, the sire of the Internet, was that it be
both redundant and resilient. Today's Net, with over 50 million host machines
and about 150 million users, is even more redundant. Many of us “live” on a
frail branch, a mere twig, a single leaf. We depend upon an ISP—an enormous
one like UUNET or a small one with perhaps 100 to 200 clients. Many of these
smaller ISPs run older routers.

Go look at Cisco's site. All the routers currently sold are Y2K sound. Go back a
couple of years: either all are sound, or there is free software available for
download over the Net. If you go back five years, not only are the routers not
Y2K-safe, they don't have enough memory to be upgraded.

So I worry that Internet users at some small twigs may lose their dial-up
connections. I worry that some DNS caches may fail or be corrupted. Most of
all, I worry about people's reactions to not being able to dial up, not being able
to see the ball drop in Times Square from their desktops (as opposed to their
TV sets), or not being able to exchange chat New Year's greetings.

If one looks at the Net statistics for hurricane Floyd last September, it's clear the
usage spikes came after the hurricane passed: folks wanted to know “How bad
was it?”, “How's uncle Fred?”, “Are you okay?”

So the big Y2K events may occur before noon in the continental U.S. on
December 31. When it's midnight in Guam, it's 8 AM in New York and 5 AM in
Silicon Valley. In the US, we'll have a lot of warning: from Tokyo, Melbourne,
Singapore, etc., as the hour marches around the globe.

I don't think we should worry. There may be glitches and minor failures, but it
won't be the end of the world. Penguins will survive.

Peter H. Salus, the author of A Quarter Century of UNIX and Casting the Net, is
Editorial Director of SSC.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Tale of Two Markets

Doc Searls

Issue #68, December 1999

“Free markets are self-organizing, permitting the most efficient use of resources
for the greatest creation of value.” —Adam Smith

“Each year when it comes time to award the Nobel prize in economics, it goes
to the economist who most eloquently paraphrases Adam Smith.” —Michael
Tiemann”

Let's start by savoring the irony that the biggest thing ever to hit business—the
Internet—was the creation of hackers working with government money. They
didn't do it for the money, and they didn't do it to make money. They did it
because it needed to be done and doing it brought a priceless kind of esteem:
the respect of their peers. Crafting the Net was a good and noble work that still
goes largely uncredited outside the circle of peers who best understand what
actually happened. Given the importance of that work to the economy, it's a
wonder these guys don't have statues on Wall Street.

Now the stock market is going gaga over Linux for the same reason it went
gaga over the Net: it's good for business. Why doesn't matter to the market.
Putting Linux to work is kind of like putting an e in front of your idea or a .com
after your company name. It's a grace. A particularly lucrative grace, it now
appears.

But just as the Big Boys didn't understand at first what that .com truly meant,
they don't understand what Linux and open source mean, either. They thought
the Net was just a 10-million-channel TV with a keyboard instead of a remote
control. Likewise, they think Linux is just a 10-million-hacker version of
Microsoft with bloated attitude instead of bloated software.

Not that the “free software” community is especially understanding about
Business. Scott Lanning had this to say about Linux Journal for a Seattle Times
story: “It's proprietary, so it means nothing.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Makes me wonder: how are we “proprietary”? In Open Sources: Voices from the
Open Source Revolution, Richard Stallman writes, “The `Linux' magazines ... are
filled with advertisements for proprietary software that works with GNU/Linux.
When the next Motif or Qt appears, will magazines warn programmers to stay
away from it, or will they run ads for it?”

Well, probably both. Why shouldn't we give Troll Tech a way to say good things
about Qt tools? What's wrong with that?

Answering this question will, of course, bring up blood-boiling moral questions
which find their most concrete expressions in licenses and copyrights (also
copylefts) that are strange and baffling to those who never heard of “open
source” or “free” software until confronted with the need to use it. What's so
“free” about something that comes with so many restrictions—and with so
many people who are quick to flame you for breaking rules only they
understand?

Business has a real demand for what Eric Raymond calls “software that doesn't
suck”, and for the people who make it. Likewise, those people have a real
demand for good development tools. And not all of those tools are going to be
free or open source. Qt is an old example. The new example comes from
Inprise (formerly Borland, also known as Borland/Inprise).

This past July, Inprise ran a survey of developers visiting various Linux sites
including Linux Journal. Of the 24,000 unique responses, about 6,000 called
Linux their primary development platform. Naturally, the leading development
tools for this group were gcc/egcs (47%) and Emacs with gcc/egcs (27%). Yet a
majority of these same 6,000 developers were willing to pay for commercial
Linux development tools: 27.9% said they would be willing to pay $300 or less,
and another 37.2% said they would be willing to pay $100 or less. Only 21%
said, “Nothing, it must be free.”

What kind of tools did they want to buy? By class, the favorites were “Rapid
Application Development IDE (RAD, visual development)” at 53.6%, and
“traditional development IDE (integrated editor, compiler, debugger)” at 35.7%.
As for particular tools, first choices were “C++Builder (C/C++ with RAD)” with
29.6%, “New IDE that works with existing standard Linux tools” with 24.2%,
Delphi with 19.2%, and “Borland C++ (C/C++ without RAD)” with 13.3%.

Inprise has responded to demand with Kylix, described by Michael Swindell,
who heads the project for the company:

Kylix is the code name for a high-performance native
Linux development environment—a Rapid Application
Development environment—that will support C++ and

Delphi development. It's a major effort. We're
developing a visual component framework to radically
speed and simplify native Linux development.
Graphical, database, GUI, Internet, multi-tier
development will all be completely visual and
component-based, using the Borland VCL and two-way
tool technologies. Just like Delphi and C++Builder for
Windows. Its architecture is a component abstraction
directly over the native environment. It is derived from
the VCL architecture the current Delphi and C+
+Builder products are based on, so the component
APIs and methodologies will be very similar. So
familiar that if you already develop with Delphi or C+
+Builder for Windows, it will be very easy to do Linux
development from day one. Essentially, you won't
have to learn the complex details of the underlying
architectures, though they'll still be completely
accessible, making new Linux development much
faster and porting far easier.

Now here's the really tricky part, because it's cross-ethos as well as cross-
platform:

We are not developing Kylix as an open-source project,
but we are investigating which parts of Kylix lend
themselves to being open source. Right now, Kylix will
allow developers to create open-source applications.
But we have not determined which, if any,
components in Kylix will be open source. Our goal is to
enable Kylix to develop both proprietary and open-
source applications, because there will be markets for
both.

As I write this (late September), Corel is getting beat up for putting a proprietary
boilerplate on the beta version of its new Linux distribution. No doubt Inprise
will run through a similar gauntlet, all the way to the market. In fact, Swindell
expects it:

This is a discovery stage that a new market has to go
through. You've got commercial vendors coming into
the open-source space, and open-source vendors
moving into the commercial space. It's a merging of
very different business practices. We will have to go
through a lot of head scratching before this settles out.

How will each model subvert the other? Consider the parting words from
Michael Swindell:

We need the extremes. These are the people fighting
for the noble causes. We can't discover open-source
standards and policies without them. And frankly,
open-sourcing everything is not a closed question for
us. We'd welcome the Open Source community's
involvement in our own development. But we've got

fourteen years of intellectual property and patent
accumulation, plus legal and shareholder interests to
protect. There are extremes on that side, too. The best
we can do right now is answer the market and talk to
everybody with an interest in making this work.

The default assumption is that the most powerful interest—shareholders—will
want Inprise's source code to stay closed. But it's not hard to imagine investor
pressure on traditional software companies to free their source code, just as
the same investors pressured .com companies to free their content.

Freedom is an efficiency that drives value. Isn't it fun to watch this new
software business teach Adam Smith's lesson, one more time?

Doc Searls is the Senior Editor for Linux Journal. He can be reached at
info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #68, December 1999

Our experts answer your technical questions.

Partitioning

I am installing and have a 3GB hard drive. I am not sure of the best way to
partition it. Any suggestions? —Jes, jes2@mindspring.com

You do not say what you plan to do with the disk, or what the host machine is
(server? workstation?). Personally, I usually partition as such:

/ (about 50Meg)
/safe (same size)
/var (half the space left)
/usr (the other half)

I then link /home to /var/home and /tmp to /var/tmp/tmp. /safe is a copy of my
root partition so that I can boot on it with LILO if my boot partition becomes
badly damaged, and it also gives me a copy of my configuration files in /etc.

Adding more partitions can be nice, but the more you add, the more chances
you have to run out of space in one of them. For instance, I think making /tmp a
separate partition instead of linking it to /var is a stupid idea, unless you're
willing to give it several hundred megabytes, or even a gigabyte, because some
programs can create huge temporary files and may fail in bizarre ways if your /
tmp partition is too small.

/usr is also meant to be read-only, which works very well on Debian and works
mostly on Red Hat (they have incorporated most of my bug reports). In both
cases, you'll still have to remount the partition as read/write before installing a
package, however. —Marc Merlin, merlin@varesearch.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Networking Oddities

I have tried to install Red Hat 6.0 twice now from the CD included in Sams' Red
Hat Linux 6 Unleashed, and both times have run into the same problem.
Installation goes fine, and when done, I can log in at the console with no
problems, I can telnet out, ping, etc., and I can ping it from other machines on
my internal network. When I use telnet to log in to the machine, I get “telnet:
unable to connect to remote host: Connection Refused”. When I try to do the
finger command, I get the same error. When I use FTP to get to the machine
from a 95 workstation, I get “Refused”. When I try to do the finger command, I
get the same error. When I use FTP to get to the machine from a 95
workstation, I get “ftp:connect :10061”, and of course, it does not connect. On
this machine, the IP address is 189.0.1.50, and the subnet address is
255.255.0.0. Interestingly though, Apache does work, and I was able to connect
the Samba client to the Samba server, so TCP/IP seems to be working, but only
some services.

My inetd.conf file has the lines

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd\
 -l -a
telnet stream tcp nowait root /usr/sbin/tcpd\
 in.telnetd

Further down, I also uncommented the line

finger stream tcp nowait root /usr/sbin/tcpd\
 in.fingerd

I have used Red Hat and other Linux flavors for over two years, and have never
had a problem like this before. —Charles Almond, charles@ovis.net

I answered a similar question for a local user who had exactly the same
problem just last week. Make sure your inetd daemon is actually running. All
the file changes in the world do nothing if the daemon isn't present to read it.
You can do a ps ax and scroll through the list of running processes to make
sure it is present. —Chad Robinson, chadr@brt.com

There is another possible reason: the connections are being denied by
tcpwrappers. Check /etc/hosts.allow, /etc/hosts.deny and /var/log/syslog. —
Marc Merlin, merlin@varesearch.com

PPP Locked by Process

I'm trying to connect to my service provider. I got them to tell me how to set it
up according to all their specifications through linuxconf, and according to
them, the setup is right. When I run ifup ppp0, I get the following message:

pppd 2.3.7 started by root uid0 device is locked by pid438 exit.

How do I unlock ttyS1? —Kirk, webmaster@dcas.net

Looks like there is or was another previous process (438) running, which has or
had the /dev/ttyS1 device locked. I think this is the port where your modem is
connected. Log in as root, check if the 438 process is still running with ps aux|

grep 438; if so, kill or terminate it with kill -HUP 438 and check on the /var/lock
directory for any file with a name like “LCK..ttyS1” which is the actual lock file.
Remove it and try again. —Felipe E. Barousse, fbarousse@piensa.com

There is also the possibility that two programs are trying to lock the device
when you try to dial out. If that appears to be happening (which is most likely
the case if there is no lock file but pppd always dies), try removing any lines that
say “lock” in /etc/ppp/options. —Steven Pritchard, steve@silug.org

RPMs, Downloading

I am an end user with a Caldera 2.2 Linux system. My question regards the
installation of new software in the RPM format and the dreaded failed
dependences with respect to a missing or wrong version of a library. I generally
use the KDE kpackage program but have had the same problem with the
command line rpm. Let me give a real example:

Download program.rpm
Run kpackage—reports: Unsatisfied dependencies
libgdk-1.2.so.0
libgtk-1.2.so.0

But, the Caldera 2.2 system has

libgdk.so.1.0.5
libgtk.so.1.0.5

Obviously, I need to install an update to GTK+ library. So, I downloaded
gtk+1.2.3 which provides:

libgdk-1.2.so.0
libgtk-1.2.so.0

Next, I download the package and use kpackage to install. Guess what:
Unsatisfied dependencies appears for this package:

libc.so.6 (glibc2.1)
libc.so.6 (glibc2.0)

How can two versions of this library be required?

libm.so.6 (glibc2.1)

Caldera 2.2 has GLIBC 2.1-3 which provides

libc.so.6
libm.so.6

How do you resolve this issue which is general and not specific to this one
program? More importantly, is there a HOWTO or FAQ or whatever that details
working with these libraries—lic5, libc6 (2.0 and 2.1), lisbstdc++ and egcs?
Unless this information is readily available to newbies so that new software can
be added to their Linux system, they will be dependent on the software
provided by their distribution. I would appreciate your solution to this problem.
—Don, dollberg@worldnet.att.net

It seems that you have the libraries you need, but that Caldera and the package
you're trying to install (probably built on Red Hat) don't agree on dependency
names. You can try to force the install with

rpm -i --nodeps package.rpm

Another option is to download package.src.rpm and rebuild it:

rpm --rebuild package.src.rpm

This will generate an rpm that will install on your system. —Marc Merlin,
merlin@varesearch.com

Ejecting a CD-ROM

I have Red Hat 5.1, 5.2 and 6 and I can't get my CD-ROM to eject. I have tried
umount, then eject on the CD-ROM. I've tried umount, then eject on the
cdplayer window. I've also tried it mounted; nothing works. My system is a
Compaq Deskpro 4000 pII CPU, 3.2GB hard drive, 32MB RAM, IDE CD-ROM. —
Uriah Seagraves, useagraves@excite.com

When the CD-ROM is mounted, the operating system will issue a lock command
that prevents the eject function from operating. I suspect your CD-ROM is not
actually being unmounted. Execute the command

cat /proc/mounts

to view what the kernel thinks is actually mounted to be sure the drive isn't in
the list. —Chad Robinson, chadr@brt.com

The eject command uses the cdrom argument as default, check on your /dev
directory if you have a symbolic link from “cdrom” to the actual device that
handles your CD-ROM drive. In my case, also on a Red Hat 6.0 system, it is:

$ ls -l cdrom
lrwxrwxrwx 1 root root 3 Aug 9 13:47 cdrom -> hdd

If there is no such link, create it by typing

$ ln -s hdd cdrom

It should work then. Actually, you can give any name to the CD-ROM unit by
creating links on the /dev directory such as

ln -s hdd compactdisc

and later on use eject compactdisc. Since you do not mention the specific
brand of your CD-ROM unit and it seems you have tested it under several Linux
versions, bear in mind that the physical CD-ROM unit must support the eject

command. Also, type man eject on your system and read more about the
options of the eject command. —Felipe E. Barousse, fbarousse@piensa.com

Boot Process Question

How do I change the order of items in the boot process? I am running Red Hat
on a laptop and I want to load the PCMCIA services before the initialization of
the network interfaces. Right now, the interfaces are initialized and eth0 fails
because the PCMCIA services don't load until later in the boot process. —Jeff
Blaha, jeffery.f.blaha@us.arthurandersen.com

If you look at the /etc/rc.d/rc2.d directory and type ls -la, you will see a list of
files (possibly among others) starting with a capital S exactly in the order they
are executed by the boot process, and a list of files starting with capital K in the
order they are executed by the shutdown or system going down processes. The
order is alphanumeric and determined by the numbers that follow the Ss or the
Ks. If you rename, say, S45pcmcia to S07pcmcia (i.e., to some number lower
than the one belonging to the network startup), the PCMCIA services will start
before the network services. This applies to all startup and shutdown script files
on the rc1.d, rc2.d and rc3.d directories under /etc/rc.d/. Modifying startup and
shutdown order of these files may damage your system behavior and/or some
of its services, so be careful. —Felipe E. Barousse, fbarousse@piensa.com

This is how it's supposed to work: the Ethernet interface gets configured when
pcmcia gets loaded, so there is nothing wrong with the message you see.
However, should you need to start PCMCIA sooner, you can edit /etc/rc.d/init.d/
pcmcia and lower the second digit on the chkconfig line. For instance, change
chkconfig: 2345 45 96 into chkconfig: 2345 9 96. Then type:

chkconfig --del pcmcia; chkconfig --add
pcmcia

The links in /etc/rc.d/rc?.d/ will be regenerated. This will change the order in
which PCMCIA is started. —Marc Merlin, merlin@varesearch.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Ellen Dahl

Issue #68, December 1999

DupliDisk RAIDcase, REALTIME Product Suite, Aplio/PRO and more.

DupliDisk RAIDcase

Arco Computer Products, Inc. announced the DupliDisk RAIDcase, a real-time
backup device offering PC users a simple and convenient way to maintain an
exact, up-to-the-minute duplicate of their IDE hard drives. With the DupliDisk
RAIDcase, any PC user can now have the security of a redundant drive that can
take over instantly in the event of a disk crash. It requires no device drivers, is
essentially OS-independent, and has been tested with systems running Linux
among other platforms. Manufacturer's SRP is $435 US.

Contact: ARCO Computer Products, Inc., 2750 North 29th Ave., Hollywood, FL
33020, 954 925-2688, 954 925-2889 (fax), arco@arcoide.com, http://
www.arcoide.com/.

REALTIME Product Suite

Advanced Management Solutions (AMS) announced its AMS REALTIME software
on Linux, an enterprise project management suite that can support thousands
of users without sacrificing performance. The AMS REALTIME products are
ODBC-compliant and cross-platform compatible, providing a consistent look

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.arcoide.com
http://www.arcoide.com

and feel to all users and allowing seamless data interchange. Contact AMS for
details pricing.

Contact: Advanced Management Solutions, 800-397-6829, info@amsusa.com,
http://www.amsrealtime.com/.

Aplio/PRO

Aplio, Inc. announced its first IP Phone appliance for the SOHO and small
business market. Aplio/PRO is a low-cost, easy-to-use stand-alone telephony
device that routes telephone calls through the Internet, allowing users to make
free calls anywhere in the world without a computer. It connects to the Internet
using any existing Ethernet connection and plugs into a regular telephone,
delivering state-of-the-art Internet telephony with superior sound quality. SRP
is $299 US per unit.

Contact: Aplio, Inc., 1250 Bayhill Drive, Suite 201, San Bruno, CA 94066,
888-642-7546, 650-794-2759 (fax), info_usa@aplio.com, http://www.aplio.com/.

OpenLinux 2.3

Caldera Systems, Inc. shipped OpenLinux 2.3, the latest release of its
OpenLinux distribution. OpenLinux 2.3 provides remote mass installation
capabilities and has been Y2K tested. It is based on the 2.2.10 kernel and
includes an improved LIZARD (LInux wiZARD) install with faster autoprobing.
The package retails for $49.95 US and contains several updated features and
commercial applications. Those who purchased OpenLinux 2.2 may upgrade to
2.3 for $19.95 US.

Contact: Caldera Systems, Inc., 240 West Center Street, Orem, UT 84057,
888-465-4689, 801-765-1313 (fax), info@calderasystems.com, http://
www.calderasystems.com/.

http://www.amsrealtime.com
http://www.aplio.com
http://www.calderasystems.com
http://www.calderasystems.com

Clustor 2.0

Active Tools unveiled a new version of Clustor 2.0 with a greatly expanded set
of application programming interface commands for software developers. It
implements a job distribution engine with API commands that allow one to
incorporate Clustor easily within other applications. The Clustor 2.0 Bundle with
one Clustor Root license and five Clustor Nodes licenses starts at $1995 US.
Contact Active Tools for price quotes on custom configuration. A CD-ROM and/
or printed manuals may be purchased for $20 US each. Free evaluation
downloads are available from the web site.

Contact: Active Tools Inc., 246 First St., Suite 310, San Francisco, CA 94105,
415-882-7062, 415-680-2369 (fax), sales@activetools.com, http://
www.activetools.com/.

V2.0 GNUPro Dev Kit for Linux

Cygnus Solutions announced an enhanced version of its GNUPro Toolkit for
Linux application developers. GNUPro Dev Kit speeds up development time and
generates greater software performance with pre-built binaries for easier
installation and compiler optimizations for Pentium processor-based systems.
New features include the ability to produce code optimized for Intel Pentium
processors; extended C++ language support; an improved GUI installer; and a
graphical debugger which now supports the debugging of multithreaded code.
The GNUPro Dev Kit for Linux is priced at $79 US per copy.

Contact: Cygnus Solutions, 1325 Chesapeake Terrace, Sunnyvale, CA 94089,
408-542-9600, 408-542-9699 (fax), sales@cygnus.com, http://www.cygnus.com/
linux/.

FortranPlus Explorer

N.A. Software Ltd. introduced their new FortranPlus Explorer pack. FortranPlus
Version 2 provides full Fortran95 language, Fortran2000 extensions, OpenGL
graphics compatibility and backwards compatibility extensions. The Explorer
pack includes the full Version 2 compiler, GUI-based source level debugger and
on-line documentation. Introductory single user prices for the Explorer pack, PC
Linux version, are <\#163>95 pounds sterling/$150 US including VAT and
shipping. Prices apply to PC (Intel processor or compatible) versions only.
Multiple licenses are available.

Contact: N.A. Software Ltd., 62 Roscoe Street, Liverpool, Merseyside, L1 9DW,
United Kingdom, +44-0-151-709-4738, +44-0-51-709-5645 (fax),
marketing@nasoftware.co.uk, http://www.nasoftware.co.uk/.

http://www.activetools.com
http://www.activetools.com
http://www.cygnus.com/linux
http://www.cygnus.com/linux
http://www.nasoftware.co.uk

ICEbox DS 2000, TA 2000 and NAS 1000

LAND-5 Corporation now provides an assortment of fault-tolerant disk RAID
arrays and network-attached storage solutions for Linux resellers, developers
and integrators. The “plug and play” ICEbox RAID and JBOD storage systems
offer economical solutions for on-line mission-critical environments. The
ICEbox DS 2000, a compact rack-mountable disk RAID storage system, performs
parallel reads and writes on up to eighteen spindles and is scalable to several
terabytes of on-line storage. For high-speed archiving, the ICEbox TA 2000, a
high-performance tape RAID array can hold up to 1.6 terabytes of RAID 3
storage. The ICEbox NAS 1000 combines disk and tape technologies in the
same chassis with up to 180GB of native storage or 144GB of RAID 5 disk
storage with local tape backup. Disk RAID arrays can be purchased from $8,364
US, tape RAID arrays from $18,000 US, JBOD configurations start under $6,000
US, and network attached storage solutions are priced from $7,000 US.

Contact: LAND-5 Corporation, 9747 Business Park Avenue, San Diego, CA
92131, 888-226-6544 (toll-free), 858-566-3611 (fax), sales@land-5.com, http://
www.land-5.com/.

LightningFAX v6.5.1

Interstar Technologies premiered its Fax Messaging solution, designed to allow
one to send and receive faxes securely and accurately from a desktop.
LightningFAX is a robust and reliable application for networks and is easy to
install, configure, use and manage. It is a cross-platform solution which takes
advantage of existing TCP/IP protocols, allowing leveraging of hardware and
software across multiple platforms and throughout an organization. Version
6.5.1 includes the ability to run on a Linux platform. Contact Interstar for price
quotes.

Contact: Interstar Technologies Inc., 5835 Verdun Avenue, Suite 302, Montréal,
Quebec H4H 1M1, Canada, 514-766-1668, 514-766-1439 (fax),
info@interstarinc.com, http://www.faxserver.com/.

OmniServer version 1.0

Omnicentrix Corporation released the OmniServer, a two-tier, multi-platform
development and deployment environment combining the ease of BASIC
programming with the rapid deployment capabilities of Java. The server
software includes drag-and-drop form design, integrated database support and
familiar language syntax assistants. OmniServer consists of a client and a server
component; the server is a fully cross-platform solution and runs on Linux. It
will run in any Java 1.1.6-enabled browser; one need not know Java to write

http://www.land-5.com
http://www.land-5.com
http://www.faxserver.com

programs. Supported DBMS systems include Oracle, Sybase and SQL Server. A
free demo is available at the web site; contact Omnicentric for pricing.

Contact: Omnicentrix Corporation, 198 Broadway, Suite 400, New York, NY
10038, 212-577-6664, sales@omnicentrix.com, http://www.omnicentrix.com/.

PCI-based S514 Card

Sangoma Technologies announced its new PCI-based S514 card, with significant
performance improvements over the ISA-based S508, particularly in the area of
bus throughput. The card is available in two versions: a dual-port version with
one main 4Mbps port and one auxiliary 512kbps port (both ports fully support
RS232 and V.35/X.21/EIA530), and a quad port version with two sets of
interfaces as described above. North American retail prices including main-port
cabling are $599 US for the S5141 with one CPU and a dual port card, $859 US
for the S5142, with a dual CPU Quad port card. Drivers will initially be available
for Linux, supporting frame relay and Cisco HDLC.

Contact: Sangoma Technologies Inc., 1001 Denison Street, Suite 101, Markham,
Ontario L3R 2Z6, Canada, 905-474-1990, 905-474-9223 (fax),
saleserv@sangoma.com, www.sangoma.com/news.htm.

PostShop, ScanShop, OCR Shop 4.5

Vividata, Inc. announced the release of version 4.5 of its PostShop, ScanShop
and OCR Shop software products. New features include the addition of
Heidelberg's ICC Color Management Module, support for new printers and
scanners, easier network printer setup, compatibility with Red Hat 6.0, new
libraries and new code. PostShop and ScanShop are available at $199 US for
home use and starting at $495 US for corporate use. OCR Shop is available at
$299 US for home use, starting at $1,495 US for corporate use.

Contact: Vividata, Inc., 1250 Addison St., Suite 213A, Berkeley, CA 94702,
510-841-6400, 510-841-9661 (fax), sales@vividata.com, http://
www.vividata.com/.

http://www.omnicentrix.com
http://www.sangoma.com/news.htm
http://www.vividata.com
http://www.vividata.com

Xess

Business Logic Corporation released Xess Spreadsheet for Linux Standard
Edition Version 4.2, the first spreadsheet designed specifically for the X Window
system and Motif. The Standard Edition of Xess is designed specifically for Linux
users who want familiar spreadsheet functionality and ease of use on their
Linux platform. For financial and science/engineering applications, Xess
provides a full range of mathematical, statistical, financial, matrix and string
functions. Xess Spreadsheet for Linux costs $69.95 US for a single-user license.
Site licenses are available.

Contact: Business Logic Corporation, 3-304 Stone Rd. W., Suite 336, Guelph,
Ontario N1G 4W4, Canada, 519-763-2097 ext.23, 519-763-5483 (fax),
sales@blcorp.com, http://www.blcorp.com/.

Instant Extranet Server (IXS)

V-ONE Corporation announced its new Instant Extranet Server (IXS) which
enables any size organization to benefit from secure business communication
over the Internet. IXS automatically installs Linux v6.0 from Red Hat; set-up
takes less than 30 minutes. IXS is simple to implement and use. It is seamlessly
integrated with VPN security from V-ONE, providing a secure e-mail server,
software for public and private web servers and FTP servers in one package.
Regular IXS pricing is $1,495 US for a 15-seat license and $3,995 US for IXS Gold
Edition, which features a 50-seat license. As a special introductory promotion,
the standard 15-seat license is available for $995 US.

Contact: V-ONE Corporation, 20250 Century Boulevard, Suite 300, Germantown,
MD 20874, 800-495-8663, 301-515-5280 (fax), sales@v-one.com, http://www.v-
one.com/.

Archive Index Issue Table of Contents

 Advanced search

http://www.blcorp.com
http://www.v-one.com
http://www.v-one.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Army National Guard Using Linux

Richard Ridgeway

Issue #68, December 1999

The Army migrates a war game tool from Hewlett Packard 700 series
workstations using HP-UX to Intel-based Linux workstations.

The Army National Guard (ARNG) has long sought to port a military war game
simulation to personal computers for cost reasons. After disappointing results
porting the graphics portion of the war game to Windows 95/NT using
Hummingbird's eXceed X Window Server, the developers were astounded by
the performance using Linux. As a result, the ARNG ported the entire war game
simulation to Linux. The Linux version is currently being fielded to more than
107 ARNG sites as well as to several foreign governments.

The SIMITAR (SIMulation In Training for Advanced Readiness) program was
established by Congress as an Advanced Research Projects Agency effort in
mid-1992 (Krug and Pickell, Army [ISSN 0004-2455], 46(2):57-59, February 1996).
Part of this effort involved modifying a battlefield synchronization tool called
Janus to train staffs and units at their hometown armories.

Cubic Applications Inc. (CAI), under contract by the Army National Guard, was
tasked to port one of the sixteen programs making up the Janus war game
from the HP-UX operating system to Linux. The selected program managed the
visualization of the Janus war game on X Window System capable workstations.
The primary reason for this tasking was to save money on the initial cost of the
platform, and more importantly, to reduce continuing maintenance costs. CAI
ported the graphic program written in C to three operating systems: Windows
95, Windows NT and Linux. The X-client environment in the Windows 95/NT
operating systems was provided by Hummingbird Communications, Ltd,
eXceed v5.11.

Table 1

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/068/2942s1.html

Table 1 is a comparison of screen refresh times on different platforms and
operating systems as one progressively zooms into a location having
intersecting roads, barriers and mine fields within the Janus war game
simulation. The graphic process was running locally on each platform. The
center of each display was the same X,Y coordinate.

Note the large discrepancy between refresh rates at zoom level 6 among
platforms and operating systems. The HP Apollo 715/100 workstation served as
our benchmark to compare other systems against, because it was the fastest
POSIX-compliant computer we had at the beginning of our testing. The range of
times for the HP 715/100 was one to nine seconds.

The graphics performance of the P200Pro PC and P133 PC running Windows 95
was considered unacceptable for the live training environment of the ARNG.
The refresh times at zoom factor 6 were 73 and 121 seconds, respectively.
Discussion with the development support staff at Hummingbird
Communications Ltd. revealed further increases in speed could not be
achieved. The Windows 95 X server software had been optimized correctly, and
the P200Pro PC platform was state of the art when these tests were performed.
A Hummingbird staff member suggested the Windows NT version of eXceed
might be faster than the Windows 95 version.

The graphics performance of the P133 PC running the Windows NT
implementation of eXceed was also considered unacceptable. The refresh time
at zoom factor 6 was 103 seconds. Compared to Windows 95, the Windows NT
software performed slower at the extremes, but faster towards the middle
zoom levels. The sum of refresh times for Windows NT was 527 seconds,
compared to 511 seconds for Windows 95. Overall, the Windows NT port
performed slower than the Windows 95 port. We were surprised to discover
the Windows NT implementation did not function unless PC users were given
administrator privileges within the Hummingbird software. It would not work at
all if PC users were given ordinary user privileges. The privilege anomaly was
previously unknown to Hummingbird. Granting super-user privileges to what
should be normal users would be a significant security breach.

As a last resort, and actually only after a very casual mention by co-workers of
an operating system found useful for Internet servers, we investigated the
Official Red Hat Linux for Intel as another possible operating system for
controlling the graphic display of the Janus simulation. Up to this point, we had
never heard of Linux. To say we were suspicious of a free operating system is
putting it mildly.

We were astonished at the graphics performance of the Linux operating
system. The performance of an entry-level Pentium and a state-of-the-art

PentiumPro with Linux was faster than any previously tested platform,
including the HP 715/100. The graphic refresh rates for a 200MHz Pentium Pro
system ranged from less than one second to three seconds. The 200MHz
Pentium Pro was three times faster than the HP 715/100 workstation (rated at
10.25 Xmark93 units). Even a 133MHz Pentium with a $90 graphics card was
twice as fast as the HP 715/100, with values from less than one second to four
seconds. As a comparison, the fastest HP workstation at the time of testing was
rated at 41.13 Xmark93 units (C180-XP HP Visualize-EG using the
PA-8000/180MHz processor, retailing at around $51,400).

Apparently, the combination of CPU horsepower, accelerated graphic cards and
reduced operating system overhead were responsible for these dramatic
results. In terms of X performance alone, several high-performance accelerated
graphics cards for the Intel platform outperformed the fastest HP X station at
the time of testing.

The mid-performance graphic card in the 200MHz Pentium Pro Linux
workstation has been benchmarked at 112,000 Xstones (1280x1024, 135MHz
dot clock rate, 8 bits per pixel, data from www.goof.com/xbench/
summary.html). State-of-the-art graphics cards are capable of almost 300,000
Xstones. For example, the Diamond Stealth 64 with the S3-968 chip set (PCI bus,
135MHz dot rate, 1280x1024 resolution, 8 bits per pixel) was rated at 291,000
Xstones in a 133MHz Pentium Linux workstation with 16MB of main memory.
As a comparison, the Hewlett Packard series of X stations have been rated by
HP as follows: Entria Color at 106,000 Xstones; Entria Hi-Res Color at 135,000
Xstones; Envizex “a” series at 168,000 Xstones; and the fastest Envizex “p” series
at 220,000 Xstones.

The decision to use Linux workstations was driven by cost and performance
parameters. In terms of cost, the Intel-based Linux workstations were much
cheaper than those from other POSIX-compliant workstation providers. A
133MHz Pentium-based Linux workstation (214 MIPS) with 32MB RAM, 2GB
hard drive, accelerated graphics card, 20-inch color monitor and a LAN card
cost around $3,000. The HP 712/100 (122MIPS) with 32MB RAM, 2GB hard
drive, 20-inch color monitor and a LAN interface cost around $10,600 (SEWP
contract). At that time, the entry-level HP 712/64 (78MIPS) with 32MB RAM, 1GB
hard drive, 20-inch color monitor and a LAN interface cost around $12,000 (GSA
price).

In terms of the performance/cost ratio (higher number being better,
performance being compared to the HP 715/100), the P133MHz Linux
workstation is 2.25/$3K = 0.75, with the 715/100 being 1/$10.6K = 0.09. The
performance/cost ratio of the P133MHz Linux workstation is 8.3 times
(0.75/0.09) greater than the 715/100. In other words, the Linux workstation

http://www.goof.com/xbench/summary.html
http://www.goof.com/xbench/summary.html

gives you 8.3 times the performance per dollar spent as compared to the HP
715/100.

The Intel-based Linux workstation is cheaper not only in terms of initial cost
and performance/cost ratio, but also in terms of adding/repairing/replacing
components. To add/repair/replace Hewlett Packard/Sun/Silicon Graphics
workstation components, you must purchase supported components. For
example, adding 64MB of EDO memory to a Linux workstation at the time of
testing cost $500 (price from SW Technology at http://www.swt.com/). Adding
64MB of memory to a Hewlett Packard workstation cost $3,800 to 5,600
(depending on the model, data from SEWP contract, CLIN 4.2.1 Memory).
Adding a 4X CD-ROM drive to a Linux workstation cost $91 (price from SW
Technology). Adding a 4X CD-ROM drive to a Hewlett Packard workstation cost
$328 to $500 (depending on the model, data from SEWP contract, CLIN 4.2.4
CD-ROM Drives). Adding a 2GB hard drive to a Linux workstation costs $285
(Maxtor MX72004A, E-IDE). Adding a 2GB drive to a Hewlett Packard
workstation costs $675 to $2,425 (depending on the model, data from SEWP
contract, CLIN 4.2.2 Mass Storage Mini Towers and Disk Drives). Note that the
SEWP contract prices are much less than the standard 22% discount Hewlett
Packard gives to the government on non-contract purchases.

The Linux workstation has yet another advantage over more traditional
graphics workstation providers—it can be a multi-boot platform. The partitions
can be any combination of MS-DOS, Windows 95/98/NT, OS/2 or Linux. Linux
includes the Linux boot loader (LILO) to specify which partition (operating
system) to load.

Since the Army chose Hewlett Packard as the platform to develop and run
Janus, no surprises would be lurking around the corner if the ARNG were to
select the Hewlett Packard as the major Janus display platform. However, the
cost/performance analysis argument, as well as continuing maintenance costs,
argued against purchasing an entire suite of Hewlett Packard workstations.

In the end, the ARNG decided to purchase around 1700 Intel-based dual-boot
Linux/Windows 95 workstations at under $1,800 each. The ARNG is using the
Windows 95 side for CD-ROM-based Distance Learning training tasks. The Linux
side is being used for the Janus war game simulation. Thus, the ARNG was able
to get two disparate uses out of the same platform, with each use requiring a
different operating system.

As the result of the above work, the ARNG decided to port the entire Janus
simulation (16 programs) to Linux. The mostly FORTRAN with some C code
software was successfully ported in about six man-weeks from HP-UX to Linux.
Almost all of the port problems were related to flaws in the source code being

http://www.swt.com

masked by the forgiving HP-UX FORTRAN compiler. The hardware being fielded
to both execute and display the Janus simulation is now entirely composed of
Intel-based Linux workstations. The port was performed by CAI's programmer,
Kevin Buehler.

As one might imagine, the cost savings and performance increase did not go
unnoticed in government circles. As a result of demonstrating the ARNG's
complete port of Janus to the Linux operating system, the next release of Janus
(v7.1) to the active duty U.S. Army will execute on Intel-based Linux
workstations. Other war game simulations are currently being ported to Linux
as a result of the ARNG's experimental program, using Janus v6.30 as the base
source code.

We considered Linux as the last resort to solving a problem. As the good word
spreads, perhaps others will consider Linux as the first resort. Linux saved the
ARNG around $8,000,000 in initial purchase costs alone (not including the more
expensive continuing maintenance costs). What might it save you?

In 1975, Richard Ridgeway wrote his first statistical analysis program on a
Hewlett Packard desktop calculator with 20 registers. Dr. Ridgeway is currently
working within the Tactical Directorate of the National Simulation Center at Fort
Leavenworth, KS. He is working to improve a unique simulation (Spectrum)
designed to train staff in military operations other than war. His wife, Luann,
represents the 35th District in the Missouri House of Representatives
(home.earthlink.net/~ridgeway(http://home.earthlink.net/~ridgeway). In his
spare time, he rides horses and sails a bit. He can be reached via e-mail at
ridgewr1@leav-emh1.army.mil.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://home.earthlink.net/~ridgeway
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Transparent Firewalling

Federico

Christian Pellegrin

Issue #68, December 1999

The authors describe how to split an existing network without affecting the
configuration of the machines already present by using the proxy arp
technique.

One of the most difficult problems when dealing with a firewall is that the
network or subnetwork we want to protect usually has to be split into at least
two subnetworks: one on the external side and one on the internal, protected
side. This, apart from the planning stage, can result in the reconfiguration of all
machines in the network to the new configuration. What is worse is that in case
of a hardware fault of the firewall, you'll have to reconfigure all machines in
your network so they will be able to see the outside until you repair the firewall
machine. The configuration of the firewall can be even harder if you don't have
access to the configuration of the machine that actually connects your network
to the external world, very often a router or something leased from a telco
(telephone company).

We are going to explain a smarter way of adding a firewall to your network
without breaking it into subnetworks or reconfiguring any machine on the
internal or external network, except from the firewall machine itself, by just
fooling the other machines into thinking nothing changed. We will cover the
aspects of the network configuration and packet routing, not real packet-
filtering firewalling, since this has already been covered in depth in another
Linux Journal issue (see Resources).

Requirements and Assumptions

In the practical examples, we will pretend we have a C class network, where our
contact with the external network is the .1 machine in the network (let it be a
router, a machine or whatever). We will assume the IP numbers .2 and .3 to be

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

free for our use. We will also need another IP greater than or equal to .4, so we
must be sure these aren't used for other purposes. Of course, with a different
network configuration, you'll have to adjust some calculations to make the
method fit your needs. To make things even clearer in the examples below, let's
fix our C class network to the 1.2.3.0 one.

As for the Linux box that will work as a firewall, you must actually have the
kernel compiled with the usual networking options, including IP forwarding and
IP firewalling and whatever you else may need, for example, IP accounting.
Also, enable IP forwarding in the kernel; in newer kernels, this is done by
enabling it directly in the /proc file-system. (For example, by using echo 1>/

proc/sys/net/ipv4/ip_forward. Your initialization scripts should take care of
this.) Another thing to note is that you should have a working arp program
installed on your system. In fact, some distributions are shipped with an arp
binary that is compiled without the new SIOCSARP kernel interface, so it doesn't
work, and if you forget to check this one thing, it may cause you many
unnecessary headaches.

The Linux box must have two Ethernet cards installed: eth0, connected to the
internal network; and eth1, directly connected to the gateway machine for our
network to the world.

Network Configuration

Now, the network interfaces on the firewall machine must be configured. The
internal network interface will be configured in the same way as the other
internal machines, as if it had all machines on the network. So in our class C
example, the eth0 configuration would be the following:

inet addr : 1.2.3.4
network : 1.2.3.0
broadcast : 1.2.3.255
netmask : 255.255.255.0

Remember that in place of 1.2.3.4, you can use any other unused address. The
commands to do this are

ifconfig eth0 1.2.3.4 netmask 255.255.255.0\
 broadcast 1.2.3.255
route add -net 1.2.3.0

This configuration will also apply to all machines in the internal network behind
the firewall; of course, the IP address will change on each.

The second network interface, eth1, will be configured as if it had a very small
network; actually, four IPs is the least we can manage. This is where the firewall
machine and the gateway will be placed.

inet addr : 1.2.3.2
network : 1.2.3.0
broadcast : 1.2.3.3
netmask : 255.255.255.252

This is obtained using the following commands:

ifconfig eth1 1.2.3.2 netmask 255.255.255.252\
 broadcast 1.2.3.3
route add -net 1.2.3.0
route add default gw 1.2.3.1

The routing table is now set, so that packets for the entire class C network will
be redirected to the internal eth0 interface, while the packets for the small
network will be routed to the external eth1 interface. Finally, the default
gateway has to be set for all machines on the internal network, that is, 1.2.3.1.
Please note that this routing scheme works because the most specific route is
applied first.

There are two more questions to solve. First, how will the gateway know how to
reach the internal machines? Remember, we haven't changed the gateway
configuration, so it still thinks it has the C class network attached to it. Second,
how will the machines be able to reach the gateway? After all, they still believe
they have the entire C class network, including 1.2.3.1, on their network
interface. Well, it will be easy; we just make believe all the machines are on a
class C network. The trick is to hack the process of translating the IP address to
the hardware (in our case, Ethernet) address, which is called the ARP (address
resolution protocol). (If you're not familiar with this, please consult the NET-
HOWTO and Proxy-ARP miniHOWTO.) This can easily be done by telling our
firewall machine to answer all ARP requests for the gateway on the internal
network and reply to all requests for any internal machines from the gateway.
Practically, this is done in two stages. First, by publishing, via arp, the gateway
and the firewall machine on the internal network, more exactly:

arp -v -i eth0 -Ds 1.2.3.1 eth0 pub
arp -v -i eth0 -Ds 1.2.3.2 eth0 pub

Thus, when someone asks for .1 or .2 on the internal network, the firewall will
reply, giving its Ethernet hardware address. In the second stage, we will publish
all internal network IPs from .4 to .255, on the firewall-gateway small network.
For the entire C class network, it look like this:

arp -v -i eth1 -Ds 1.2.3.128 eth1 netmask\
 255.255.255.128 pub
arp -v -i eth1 -Ds 1.2.3.64 eth1 netmask\
 255.255.255.192
pub
arp -v -i eth1 -Ds 1.2.3.32 eth1 netmask\
 255.255.255.224 pub
arp -v -i eth1 -Ds 1.2.3.16 eth1 netmask\
 255.255.255.240
pub
arp -v -i eth1 -Ds 1.2.3.8 eth1 netmask\
 255.255.255.248

pub
arp -v -i eth1 -Ds 1.2.3.4 eth1 netmask\
 255.255.255.252 pub

This way, we have partitioned the address space and published all our IPs.
When the gateway asks for the hardware address of an internal machine, the
firewall will reply giving its address. Since we turned on the IP packet
forwarding, once the firewall has a packet and replies to the ARP request, it will
forward it to the destination machine according to the routing table.

This solution has proven to be very useful for us, especially when we had to
enhance the existing network without causing “too much trouble”. The last step
is, of course, tuning the firewall, IP accounting, transparent proxy or whatever
you need on the Linux box—but that is another story.

Resources

Federico is studying computer science at the University of Udine. When not
hacking or coding he enjoys reading sf, listening to music and playing guitar. He
can be reached at drzeus@infis.univ.ts.it.

Christian Pellegrin is studying astrophysics at the University of Trieste and
works part-time as a system administrator and teacher in a high school. When
not playing with Linux and other fun software or hardware he enjoys discussing
who is the best film director of all times with his girlfriend. E-mails are welcome
at chri@infis.univ.ts.it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3246s1.html
mailto:drzeus@infis.univ.ts.it
mailto:chri@infis.univ.ts.it
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Customizing the XDM Login Screen

Brian Lane

Issue #68, December 1999

How would you like your screen to look on start up? Here's how to make it look
your way.

“What's an XDM screen? Is this more cryptic Linux geek speak?” Well, yes, but
I'm going to make it easy to understand, so you too can speak more like a Linux
geek. If you are running the X Window System and have your system set up to
boot straight into X and display the box asking for your login name and
password, you are already running XDM. If you are running X using the startx

command from a shell prompt, you aren't running XDM now—but you will soon
be.

XDM has features other than the ones relating to the xlogin box. These other
features are useful only if you are running X on multiple screens or machines. If
you are interested, read the xdm man page. In this article, I will focus on basic
cosmetic changes like the background image, programs to be displayed while
waiting for a login, colors and fonts used in the login box and the size and
position of the login box.

I will assume you have X set up and running correctly. If you don't have X
working, please consult the documentation that came with your Linux
distribution.

If you already have XDM up and running, you can skip ahead to the section on
customizing XDM.

Setting Up XDM

Setting up XDM requires you to change the run level of your system. The run
level controls which mode the system is running in when it is rebooted. It can
run in single user mode, multiuser mode without networking, multiuser mode
with networking and multiuser mode with XDM running. My system is Red Hat

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

5.1 and it uses run level 3 for normal multiuser operation and run level 5 for
XDM operation (multiuser, plus starting X at boot time). Edit your /etc/inittab
file as the root user to change the run level of the system. First, make sure the
XDM run level exists in /etc/inittab. It should look something like this and is
usually located near the end of the file:

Run XDM in run level 5
x:5:respawn:/usr/bin/X11/xdm -nodaemon

This is the entry from Red Hat 5.1. Slackware, Debian, SuSE and other Linux
distributions with X should be similar. The run level number is 5 in this case, but
may be different in your distribution.

You can test the XDM run level by typing init 5. If the login box appears and
everything looks okay, you can change the default initlevel for bootup or
experiment with the XDM changes without rebooting your system. If you don't
want XDM to start at boot time, skip ahead to the next section.

Make a backup copy of the /etc/inittab file before you change anything.
Rename it to something like inittab.bak.1, then look for the initdefault line,
which is usually near the start of the /etc/inittab file. Since you are not yet
running XDM, yours probably looks something like this:

id:3:initdefault:

To make your system start XDM at boot time, you change the 3 in this line to
equal the number in the XDM run level line. In my case, I changed the 3 to a 5.
Reboot your system, and a gray screen with a box in the middle asking for a
user name and password will appear. You can log in and make sure everything
is running okay, but that isn't necessary to complete this tutorial.

Customizing XDM

Now that XDM is up and running, we can start making changes. We will be
switching between a text-mode login and the XDM screen. To get to the text
mode console, press <H>ctrl<H>-<H>alt<H>-F1; to get back to the XDM screen,
press <H>ctrl<H>-<H>alt<H>-F7. With some distributions, you may have to use
<H>ctrl<H>-<H>alt<H>-F6 for the XDM screen.

Change to text mode and log in as root. Change directories to /usr/lib/X11/xdm
and look at the files present in this directory. These files control the behavior of
your system when XDM is started and a user logs in using XDM. The files we are
concerned with are:

• Xsetup (or Xsetup_0), which sets up the XDM screen
• Xresources, which controls the behavior of the xlogin widget

Changing the Background Color

Let's start by changing the background color to something other than gray. You
can use any program which can display an image or color on the background,
which is sometimes called the root window. One program included with the X
distribution is xsetroot. Edit the Xsetup file and comment out any programs
that may already be setting the background image, like xbanner, xv or xsetroot.
Add the following line:

/usr/X11R6/bin/xsetroot -solid steelblue

Color names like steelblue are defined in the /usr/lib/X11/rgb.txt file. This maps
color names to the actual Red/Green/Blue color settings, making things more
readable. If you use a color name that has spaces in it, you need to enclose
them in quotes, e.g., "navy blue".

Save the Xsetup file and switch back to the XDM display by using <H>ctrl<H>-

<H>alt<H>-F7 (or F6, depending on which virtual console the X server is using
for its display). Then restart XDM by pressing <H>ctrl<H>-<H>alt<H>-

<H>backspace<H>. Note: do not use the <H>del<H> key. It will reboot the
whole system instead of just restarting XDM.

You should now have a nice, solid steel-blue background. You can experiment
with different colors until you find one that you like.

Changing the Background Pattern

A bitmap can be used to tile (copied over and over to cover the whole display) a
simple two-color image onto the background instead of a solid color. There
should be a collection of bitmaps in /usr/include/X11/bitmaps. You can also
create your own using the bitmap program included with X windows. Try
changing the xsetroot line to this:

/usr/X11R6/bin/xsetroot -bitmap\
/usr/include/X11/bitmaps/xsnow

Restart XDM as before, and you should now have a nice winter scene. You can
change the foreground and background color with the bitmap by adding the -fg
and -bg options and specifying a color. Try changing it to this:

/usr/X11R6/bin/xsetroot -bitmap\
/usr/include/X11/bitmaps/xsnow -fg blue -bg yellow

Not the most wonderful colors for snow, but you get the idea. The colors
recognized by the -fg and -bg options are the same as the ones in the rgb.txt
file discussed above.

You can also tile color bitmaps stored in the xpm format. The xpmroot program
is used for this. Change the xsetroot line to something like this:

/usr/X11R6/bin/xpmroot\
/usr/include/X11/pixmaps/file.xpm

Displaying a Background Image

Now that we can display colors and tiled bitmaps on the background, it is time
to display a picture on the background. To do this, I use a shareware graphics
program called xv. You can get it from the xv home page at http://
www.trilon.com/xv/, or it may be included with your Linux distribution.
Remember, this is shareware, and you should support the author by sending
him $25 if you find his program useful.

I have chosen to use xv, but any program capable of displaying an image on the
background can be used. For xv, you tell it to display the image centered on the
background. You also want it to exit immediately after displaying the image;
otherwise, XDM will hang until the xv program is exited manually.

/usr/X11R6/bin/xv -root -rmode 5 -quit\
/root/.gromit01.jpg

I use this to put a picture in the center of the display. To view your changes,
save the Xsetup file and press <H>ctrl<H>_<H>alt<H>-F7 to switch back to the
XDM screen. Press <H>ctrl<H>-<H>alt<H>-<H>backspace<H> to restart the X
server. You should now see your image in the center of the screen, covered by
the login box. xv supports several other placement options using the -rmode

command. You can see a list of these options by typing xv -rmode -1.

Displaying Random Images

Listing 1

With the help of a simple Perl script, you can display a random image on the
background each time XDM is run. Listing 1 is a simplified version of a script
written by Scott Scriven, toykeeper@cheerful.com.

Type in this program or download it from ftp.linuxjournal.com/pub/lj/listings/
issue68/3325.tgz. and save it as /usr/local/bin/bkgd. Make sure execute
permissions are set by typing:

chmod ugo+x /usr/local/bin/bkgd

You may also have to change the path to xv and find to match your local setup.
Including the absolute paths in the script ensures it will work correctly, even
when the $PATH environment variable isn't set.

http://www.trilon.com/xv
http://www.trilon.com/xv
https://secure2.linuxjournal.com/ljarchive/LJ/068/3325l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/068/3325.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/068/3325.tgz

To load a random background, change the xv line in Xsetup to usr/local/bin/
bkgd instead. Create a /usr/lib/X11/backgrounds directory and fill it with your
favorite images. A couple of good places to look for background images are
http://www.digitalblasphemy.com/ and http://ipix.yahoo.com/.

Listing 2 is a working Xsetup file with the intermediate steps commented out
with “#” characters.

Listing 2

Customizing the Login Box

Now we want to customize the xlogin box using the /usr/lib/X11/xdm/
Xresources file. This file is also used for configuring other XDM widgets like the
chooser, but we aren't going to deal with these other options here—see the
XDM man page to learn about them.

We can move the xlogin box, resize it, change its color, its fonts and what it
says. I have moved mine into the lower-right corner and made it as small as I
can, so that it doesn't cover up the background image.

The XDM xlogin widget uses X resources to specify these settings. They are all
stored in the Xresources file and are read by XDM each time it restarts. A list of
the available options, taken from the XDM man page, is shown in “Xresources
Options”. I will go through each option and explain its use.

I have ignored several more advanced xlogin resources, some of which may
appear in the Xresources file. It is safe to leave them alone—the defaults set
when you installed X should work fine. The XDM man page contains full
descriptions of each option, if you want to experiment with them.

Move and Resize the xlogin Box

The .width, .height, .x and .y settings can be used to set the size and screen
position of the xlogin box, or you can use .geometry to specify all of these at
once. Let's move the login box to the lower-right corner and make it 300 by 250
pixels. The screen coordinates to be used start with 0,0 in the upper-left corner,
and the coordinates of the lower-right corner will depend on your screen
resolution. But X has another way to specify coordinates: -0,-0 is the lower-right
corner of the display, no matter what the screen size. Add this line to the
Xresources file, near the other xlogin* definitions:

xlogin*geometry: 300x250-0-0

http://www.digitalblasphemy.com
http://ipix.yahoo.com
https://secure2.linuxjournal.com/ljarchive/LJ/068/3325l2.html

Save the file and restart the x server as you did after changing the background
image. Your login box should now fit snugly into the lower-right corner of the
display, revealing more of your background image.

Now we can change the colors. There are five resources relating to color in the
above table. First, change the default foreground and background colors for the
box using the xlogin*foreground and .background settings. Let's make it black
on blue:

xlogin*foreground: black
xlogin*background: steelblue

Save and restart the X server to make sure your changes have taken effect. The
greeting and login prompt did not change color, because you haven't changed
them yet. You must specify each individual color you want to change. The
.greetColor setting is the greeting that is displayed at the top of the box.
.promptColor is the login: and password: prompt color, as well as the text you
enter for your user name. .failColor is used for when the user name or
password entered is invalid.

Try out these settings:

xlogin*foreground: black
xlogin*background: steelblue
xlogin*greetColor: white
xlogin*promptColor: grey
xlogin*failColor: red

Not a terribly inspiring color scheme, but better than black on white. Play
around with it until you find the colors you like.

Changing the xlogin Fonts

The resources that control the four fonts we want to change are:

• xlogin*font: used for displaying the typed-in user name
• xlogin*greetFont: used to display the greeting
• xlogin*promptFont: used to display the prompts username: and

password:
• xlogin*failFont: used for displaying that the login failed

Fonts under X are difficult to deal with. They have an abundance of options and
modifiers, most of which are never used. The xfontsel program can make font
selection much easier. Just browse through the fonts, selecting the font style,
size and attributes you want. Then click on the select button and paste the font
string into the Xresources file using your middle mouse button, or both mouse

buttons at once if you have a two-button mouse. Add these lines to your
Xresources file:

xlogin*font:\
 -*-courier-bold-r-*-*-18-*-*-*-*-*-*-*
xlogin*greetFont:\
 -*-helvetica-bold-r-*-*-24-*-*-*-*-*-*-*
xlogin*promptFont:\
 -*-lucidatypewriter-bold-r-*-*-18-*-*-*-*-*-*-*
xlogin*failFont:\
 -*-times-bold-i-*-*-24-*-*-*-*-*-*-*

Experiment with the different fonts and sizes until you find something you like.

Changing the xlogin Prompts

You can also specify the text that is displayed for each of the four prompts
associated with the xlogin widget. .greeting can be set to CLIENTHOST and will
display the full host name of the system it is running on. The .namePrompt

value is displayed to ask for the user name, .passwdPrompt asks for the
password, and .fail is displayed when an unsuccessful login occurs. For
example:

xlogin*greeting: Welcome!
xlogin*namePrompt: Name:\040
xlogin*passwdPrompt: Password:
xlogin*fail: !WRONG!

Add a Clock to Your XDM Screen

X distributions usually include the xclock program which can display a nifty
looking analog clock. Add it to your XDM screen by inserting this line in your
Xsetup file:

xclock -hl white
-hd white -bg black -fg white\ -geometry 100x100+0+0 &

This will display an analog clock of moderate size in the upper-left corner of the
screen. The clock may stay running, even after a user has logged in.

Well, that's about it for the basic customization of XDM. There are many things
to play with, and hopefully I have given you a good framework with which to
begin experimenting. No two users have the same tastes, so it may take some
time before you finally get the look and feel you want.

Xresources Options

Brian Lane and his wife Denise live in Olalla, Washington with their four
computers. He spends his days developing embedded software and his nights
writing Linux code. He can be contacted at nexus@tatoosh.com.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3325s1.html

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kerberos

Cosimo Leipold

Issue #68, December 1999

Mr. Leipold explains what Kerberos is and why you want to use it.

Kerberos is a powerful set of programs which allow you to have encrypted
connections to virtually anything: TELNET, FTP and even e-mail. This is of little
use to the modem user, but in larger settings where Ethernet is used and
sniffing is a real danger, Kerberos provides a viable and powerful solution.
There is, however, one problem—Kerberos is notoriously known for being
overly complex and difficult to install. This article is designed to help you make
a good start; before you know it, with a little experimentation everything will
(kind of) work. I wish I could explain everything in detail here, but then, this
would be a book, not an article.

Here Comes Disaster

Like almost every major upgrade/change, it would be ideal to make a backup of
your system. If you can, do it. If you don't have a tape drive be careful installing,
Kereberos shouldn't write over your files, but if you want to be sure, make
copies of /sbin somewhere. It takes two seconds and if something goes wrong
it will be well worth your time.

Now we go grab the files. There are binary and source distributions of Kerberos
for Linux. I've found that the source usually causes me less problems than the
binaries. If you are up to playing around a bit go ahead and get the source,
otherwise grab the binaries. Either can be found at http://web.mit.edu/
kerberos/www/. I'll cover only the binaries here—simply because compiling the
source isn't part of the scope of this article. I'm going to assume you managed
to install things right. One important note: If you do choose to use the source (I
recommend you do) make sure you extract all the tar archive files, not just the
one containing the source. Also, if you install things in a different directory (not
/krb5) then you will need to modify the files mentioned below to reflect your
installation directory.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://web.mit.edu/kerberos/www
http://web.mit.edu/kerberos/www

Two Files: /etc/krb5.conf and kdc.conf

These two files control virtually everything. They control the name of your
REALM (see below) and who can connect; however, they can be fairly complex.
Before you set them up, you will probably need to understand a few terms:

• REALM: I think of a realm as a “group”. Machines will belong to this group.
It has become almost standard procedure to make the realm the same as
your domain name, just with capital letters. In my case, I called it UNDER,
but you could call it anything you wanted. Yes, you can have more than
one REALM, but you probably won't need one. Remember—the REALM is
case sensitive! Pick a standard and stick to it.

• KEYTAB: a file that contains encrypted information allowing users/
machines to authenticate themselves. Each machine that attempts to
authenticate itself to the KDC (see below) must have one. This is done by
issuing the ktadd command under kadmin.

• KDC: the Kerberos Distribution Center—the one that causes you
headaches. This is the machine that controls access.

• PRINCIPAL: a principal is a “definition” of a user or a host. It is, effectively,
what tells the server a user exists or a server is trusted.

• INCIDENT: when making a new principal, the notation is as follows:
incident/host@REALM. For example, with ktadd, doing something like

 ktadd host/pepsi.kellogg.nwu.edu@UNDER

• would make the incident host for the machine pepsi.kellogg.nwu.edu
which is part of the UNDER realm.

Listing 1

Take a look at my /etc/krb5.conf file and notice the following:

• default_realm = UNDER: name of your realm.
• profile = /krb5/var/krb5kdc/kdc.conf: location of your kdc.conf file

Also note the section called [realms]. Under it, I have the name of my realm,
UNDER, and the machine that hosts that information, in this case,
underground.kellogg.nwu.edu. This will be the hostname of where you just
installed Kerberos. [domain_realm] explains who can connect to the realm:
anyone from anywhere within kellogg and within res-hall (the dorm rooms at
Northwestern). Replace all the information mentioned above with the name of
your REALM and the name of the machine you installed the server on.

Listing 2

https://secure2.linuxjournal.com/ljarchive/LJ/068/3329l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3329l2.html

Now on to your kdc.conf file. You are going to need to place it wherever you
defined it in /etc/krb5.conf. My suggestion is you place it in the same directory I
did. This will mean making these directories. If you do that, you can just copy
my kdc.conf and save yourself some time. Just change the name of the realm to
whatever you picked when making krb5.conf file. These two files are integral to
making things work. You may want to double check for typos and possibly save
yourself some headaches later.

Now, some tedious but easy work must be done. Create the database that
controls who can login where by issuing the following command:

kdb5_util create -r
Initializing database '/krb5/lvar/krb5kdc/principal' for
 realm '
master key name 'K/M@YOUR_REALM'

In my case, YOUR_REALM would have been UNDER. Just replace it with
whatever the host name of the machine you are on right now is. You will be
asked for a master password; pick something you won't forget.

Now you must make an ACL file. This basically controls who can connect and
administer the REALM. It can also be complex, but for our purposes we will
keep it simple. Edit the file (or create) defined by acl = in the kdc.conf file. Place
the following on a line by itself:

*/admin@

This means the administrator can control things. I don't see why you would
want anything else anyway.

More Fun with Commands

Now it is time to add users to the machine. First, start off with the administrator
account.

kadmin.local
kadmin.local: addprinc admin/admin@
Enter password for principal "admin/admin@
 your_password
Re-enter password for principal "admin/admin@
 your_password
Principal "admin/admin@YOUR_REALM" created.

Then create a keytab on the server. This will authenticate who can modify
things on the server and who cannot. Make sure you place everything on one
line (including kadmin/changepw):

kadmin.local: ktadd -k /etc/kadm5.keytab kadmin/admin kadmin/changepw
Entry for principal kadmin/admin with kvno 3, encryption type
DES-CBC-CRC added to keytab WRFILE:/etc/kadm5.keytab.
Entry for principal kadmin/changepw with kvno 3, encryption type
DES-CBC-CRC added to keytab WRFILE:/etc/kadm5.keytab.

You should see something similar, but probably not identical. Then you have to
add the necessary information to the server. Edit your /etc/inetd.conf and
insert the following:

krb5_prop 754/tcp # Kerberos v5 slave propagation
kerberos-adm 749/tcp # Kerberos v5 admin/chpwd
kerberos-adm 749/udp # Kerberos v5 admin/chpwd
kpasswd 761/tcp kpwd # Kerberos "passwd" -kfall

Now, as root, restart inetd and run krb5kdc and kadmind. Congratulations,
most of the pain is over. It took me eight hours to get here my first time trying
this—hope you did better.

Moment of Truth

Now test it. A few commands to know about are kinit, klist and kdestory. These
initialize your tickets which authorize you, list them and destroy them. (Yes,
from the user's point of view, everything is fairly simple.) So try it out by doing a
kinit admin/admin@YOUR_REALM

underground:~> kinit admin/admin
Password for admin/admin@UNDER:
underground:~> klist
Ticket cache: /tmp/krb5cc_1000
Default principal: admin/admin@UNDER
Valid starting Expires Service principal
08 May 98 15:04:45 09 May 98 01:04:43 krbtgt/UNDER@UNDER

If you got it to work this far, you are virtually done. Add yourself as a user. Run
kadmin—it should ask you for a password, same as the one you typed in way
back when you created kadmin/admin. The procedure for adding another user
is just as simple. Each user is a “principal” (don't ask me where the name came
from).

kadmin: addprinc
Enter password for principal "user@
Re-enter password for principal "user@
Principal "user@YOUR_REALM" created.

Should you make a mistake, just delete the principal like so:
kadmin: delprinc user@
Are you sure you want to delete the principal "user@
Principal "user@YOUR_REALM" deleted.

Now test this out the same way you did the administrator. You should get a
new ticket.

How Nice, But ...

I still haven't explained how to use it, so here we go. In order for you to be able
to use Kerberos encrypted services on a machine, it must satisfy the following:

• It has a principal host/hostname@REALM on the server

• It has the correct services set up.
• It has a keytab file and has /etc/inetd.conf set up right.

The easiest way to try this out is to set up the server so that it will let you make
encrypted connections, before you attempt to add other machines. The
problem is that it is a bit different from setting up another machine. So we are
going to say we want to have kerberized TELNET and FTP on the machine
pepsi.kellogg.nwu.edu for this example. To do this, you need to satisfy the
three requirements above.

Let's go over the first. You are going to need to install Kerberos on the machine
you want to offer kerberized services on first. All this means is putting the
binaries on the machine (in our example pepsi.kellogg.nwu.edu). So just go
install the binaries. You can, if you want, just copy them over. Then copy your /
etc/krb5.conf file from the KDC (server) and place it on the machine you are
giving kerberized services (pepsi.kellogg.nwu.edu). From that machine, you
must run kinit admin/admin. Then run kadmind from your machine (or in my
case pepsi.kellogg.nwu.edu) and run the following commands:

kadmin: addprinc host/pepsi.kellogg.nwu.edu
kadmin: addprinc telnet/pepsi.kellogg.nwu.edu
kadmin: addprinc ftp/pepsi.kellogg.nwu.edu
kadmin: ktadd host/pepsi.kellogg.nwu.edu telnet/pepsi.kellogg.nwu.edu
 ftp/pepsi.kellogg.nwu.edu

A quick explanation is in order. For each service you plan to offer that is
kerberized, you must have a principal. Hence, the use of telnet and ftp with the
addprinc command. Then you must make the keytab. That is done by issuing
the ktadd command. All of this must be done on the machine, you are setting
up to offer services (in this case pepsi.kellogg.nwu.edu).

Finally, edit your /etc/inetd.conf and add the following lines. You will want to
comment out any previous definitions of telnet and ftp.

klogin stream tcp nowait root /krb5/sbin/klogind klogind -ki
 eklogin stream tcp nowait root /krb5/sbin/klogind klogind -eki
 kshell stream tcp nowait root /krb5/sbin/kshd kshd -ki
 telnet stream tcp nowait root /krb5/sbin/telnetd telnetd -a valid
 ftp stream tcp nowait root /krb5/sbin/ftpd -a

Go back to the main server and create yourself a ticket (kinit

user@YOUR_REALM). Now make a user (see above addprinc command) for
yourself and try to login using telnet like this:

underground:~> telnet -l cosimo pepsi
Trying 129.105.197.33...
Connected to pepsi.kellogg.nwu.edu (129.105.197.33).
Escape character is '^]'.
[Kerberos V5 accepts you as "cosimo@UNDER"]
Last login: Fri May 8 13:44:44 on tty2
Linux 2.0.30.
pepsi:~>

Note how you didn't have to enter a password. That's okay, because the ticket
gave you the access to the machine. The ticket does eventually expire, but it can
be renewed by issuing a new kinit command. (Do a klist to see when it does
expire. If you copied my /etc/krb5.conf, it will be 600 minutes.)

Tie Some Loose Ends

Let us tie up a few loose ends: you should be aware that changing telnetd -a

valid to telnetd -a user will allow users to login without authentication. If they
don't run kinit, they won't even get a login prompt if you use telnet -a valid.
Remember, since the passwords are stored on your KDC, make sure no one
breaks into it; otherwise, they will have access to all the machines to which the
KDC grants access. Get to know the terms principal, realm, kdc, etc.—almost
anything you come across will use them.

Now What?

Well, you most likely feel I've left out a lot—and you are right, I have. There is
plenty more to learn and plenty more to try. The MIT webpage has tons of links
to more information. Of course, you can always e-mail me and ask me, and I'll
try to answer you quickly.

Cosimo Leipold (cleipold@kellogg.nwu.edu) is a student at Northwestern
University who has nothing better to do than learn UNIX. He now works for the
Kellogg Graduate School of Management as a System Administrator. He lives
with his love Chiara, who says he's a dork.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What Can you Expect? —A Data Collection Project Using

Linux

Denny Fox

Issue #68, December 1999

The author describes the end-to-end process of defining and implementing a
data collection project using Linux. The project illustrates the use of Expect,
stty, cron, a little C programming, gnuplot and ioctl to the serial device driver.

I have been doing a fair amount of testing and monitoring on the system and
hardware clocks of my Debian 2.0 machine that I use for file (Samba),
communication (ISDN/masq/diald), printing and modem pool (mserver) service
on my home office network. I wanted to see how well I could correct the system
clock with adjtimex without running ntpd all the time and keeping the ISDN line
to my ISP up. I had been recording daily data for the clocks and an ntp (network
time protocol) reference server using the logging feature of adjtimex with cron

and an Expect script. I was noticing some odd changes from day to day, and
was beginning to wonder if temperature was affecting the server's system
clock.

Why Debian?

adjtimex allows you to fiddle with the kernel parameters which control the
system clock. The file /etc/rc.boot/adjtimex contains settings for TICK and FREQ,
the coarse and fine settings used to tune out variations in the frequency of the
crystal oscillator on the motherboard which supplies the interrupts to the
system clock timekeeping process. The command:

/usr/sbin/adjtimex --log --host ns.nts.umn.edu

logs data for the reference ntp server, in this case ns.nts.umn.edu, the system
clock and the hardware clock to /var/log/clocks.log. By using

adjtimex --review=/var/log/clocks.log

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357s3.html

you can get suggested changes for TICK and FREQ which will tune the kernel
clock and hopefully get it to match the ntp reference server. This is all well and
good, as long as the clock crystal is stable; but what if it varies with
temperature?

The Idea

What if I could measure and record the temperature near or actually inside the
server? I could then correlate the temperature data with the system clock data
to see if they were related. I have a Micronta (Radio Shack) digital multimeter
with a serial interface. All I needed to collect the data was a circuit to convert
temperature to voltage and interface the meter to a serial port on the server.

Gathering the Hardware Tools

A little research on the Net turned up a couple of thermocouple to millivolt
converters, but they cost much more than I wanted to pay. Being an electrical
engineer and having worked at a measurement company for many years, I
knew that a temperature to volts converter circuit is fairly simple. A couple of
friends helped out by putting together a circuit that provides .01 volts out per
degree Fahrenheit that fits on a piece of vector board about an inch square and
runs from a 9-volt battery. See Figures 1 and 2 for the schematic diagram and a
picture.

Figure 1. Schematic for Temperature-to-Volts Converter

https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f2.large.jpg

Figure 2. Converter

The Micronta No. 22-182 LCD Digital Multimeter comes with a five-conductor
cable and a short section in the manual describing test programs for MS-DOS
and MS-BASIC. A quick check showed that these worked fine. The serial
interface communication parameters are 1200 baud, 7 data bits, no parity and
2 stop bits. Using the meter's continuity test function, I made a cable drawing
as shown in Figure 3, a complete pinout and description of the serial port
signals as found on a PC. These ports have male connectors with either 9 or 25
pins, and are wired as DTE (data terminal equipment). The RS-232 specification
is designed so that a DTE port as on the PC can be connected to a piece of DCE
(data communication equipment), typically a modem, with a straight-through
cable. DCE usually has a female connector. You can use Table 1 to wire up a 9-
pin to 25-pin conversion cable if you need one. Now I was ready to try reading
the meter on Linux.

Figure 3

Table 1

Gathering the Software Tools

Before I hooked up the cable to /dev/ttyS0, I checked to see if there were any
drivers like getty or gpm running on the port. Sure enough, there was a leftover
gpm driver for a mouse, even though the mouse had long since been
disconnected. I did an

https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f3.txt.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357t1.html

/etc/init.d/gpm stop

and renamed the init script with

mv /etc/init.d/gpm /etc/init.d/nogpm

to prevent gpm from restarting in the event of a reboot. If you have a getty
process running on the port, you will have to disable it by commenting out the
correct line in /etc/inetd.conf and restarting init with

kill -HUP 1

Use something like
ps auxw|grep tty

to make sure the serial port you are trying to use is free.

I used stty to set the port to the meter's communication parameters with this
command:

stty speed 1200 cs7 cstopb -echo clocal < \
 /dev/ttyS0

speed 1200 sets the baud rate, cs7 sets 7 data bits, cstopb sets 2 stop bits and
parity is none by default. I added the -echo to make sure the device driver
didn't echo back characters sent to the port and clocal to disable the modem
control signals.

I decided to use Expect to collect the data, since the meter has a very simple
“send a command” and “get a response” paradigm. Expect is a powerful tool
and can be used to automate UNIX programs which interact with a user or
processes needing a command or trigger and return some kind of response.
Expect is built on top of Tcl, a widely used extensible language. I had recently
discovered Expect and found it is one of those tools you just don't know how
you ever got along without. You can easily automate things with Expect that are
extremely difficult or next to impossible with shell scripts or other languages.
Sol Libes' book, Exploring Expect, was a valuable resource. Mr. Libes is the
author of Expect. I also found the Expect and Tcl web pages very helpful. I had
previously used Expect to automate a couple of tasks such as the clock data
logging mentioned above.

The meter protocol is very simple: send the meter a D\r (a capital D followed by
a return), and it sends back a 14-character string ending in a \r (return). The
message sent back by the meter is of the form:

Byte 1 2 3 4 5 6 7 8 9 A B C D E
Ex. 1 D C - 1 . 9 9 9 9 V \r
Ex. 2 1 . 9 9 9 9 M o h m \r

In practice, since this is a 3-1/2 digit multimeter, a space character replaces the
least significant digit in column 9.

The First Try

Now that I had the port cleared and set to the right communication parameters
and the cable hooked up, I was ready to talk to the meter.

However, when I hooked it up to the serial port on the Linux box, I got no
outputs. Luckily, I have a serial breakoutbox, a piece of test equipment that has
a two-color LED for each signal, switches to disconnect signals and sockets to
jump them together. This is plugged in between the computer port and the
piece of equipment you are trying to diagnose. My inexpensive box lights the
LEDs red for negative voltages and green for positive voltages.

After much probing and watching the serial breakout box, I discovered that the
meter depended on having the RTS (request to send) signal stay low to provide
the negative voltage for the meter's output drive circuit. Without RTS low, the
meter's TXD (transmitted data) line wouldn't work. Normally when you open a
port, both the RTS and the DTR (data terminal ready) lines go high.

Creating the Missing Tools

Now, how do you control the modem control lines on a serial port? This is
where having access to the source code for the serial drivers, and other utilities
truly helped. If this were just a DOS application (single user, single tasking), it
would be simple to read the ACE's (asynchronous communication element)
control register, set the right bit, and write the data back out to the port. Since
user-space programs can't write directly to system devices, I had to figure out
how to tell the device driver to manipulate the RTS line. After much searching, I
found a UNIX serial support site, which led to a serial utility site, which had a
utility that I could hack to do what I wanted. I'm not a super C programmer, but
this was just what I needed to give me the clues on how to operate the ioctl
function of the serial driver. I hacked up a couple of programs: clrrts.c to clear
the RTS line, and modctl.c, which can either set or clear RTS or DTR on a serial
port. The source of clrrts.c and modctl.c can be found in the archive file
ftp.linuxjournal.com/pub/lj/listings/issue68/3357.tgz.

Working Around the Gotchas

During my earlier sessions with Expect, I discovered a little hitch with Expect
and cron. The Expect version 5.25 delivered with Debian 2.0 stable (libc6) will
not spawn processes when run by cron. The Expect 5.19 on Debian 1.3 (libc5)
works fine. I reported a bug to the Debian maintainers to learn that it might be
a while until the libc6 issues were fixed. I worked around the problem by

https://secure2.linuxjournal.com/ljarchive/LJ/listings/068/3357.tgz

manually installing the Expect 5.19 executable and Tcl 7.4 support libraries,
from my Debian 1.3 system to the 2.0 server, which already had the general
libc5 support libraries, to support another libc5 package I was running.

The meter has an auto-shutoff feature, which can't be disabled. It shuts the
meter down if more than ten minutes go by with no activity. Clearly, this wasn't
very good for long-term data collection. To fix this, I added some code to the
Expect script to define how many times per hour I wanted the data logged, and
set cron to read the meter once per minute. This keeps the meter on, but
avoids having a huge log. The crontab line that runs rddmm.exp is:

* * * * * /usr/bin/expect5.19 /root/rddmm.exp

A couple of things showed up after a reboot. I discovered the Expect script was
timing out, since the meter was not responding. Two things came out of this.
The first was some interesting things that happen when you attempt to change
certain stty parameters, and the serial port cable does not have connections to
the modem control input lines: CTS (clear to send), DSR (data set ready) and
DCD (data carrier detect). Basically, the port gets stuck. Since the cable that
came with the meter left CTS, DSR and DCD open, and I did not want to modify
the cable, I figured out which stty parameters not to use: hupcl and crtscts. I
had placed hupcl in the original stty settings for the port while sorting out the
RTS low requirement. The port had accepted the hupcl setting, because at the
time the command was issued, I had the serial breakout box on the port and
used the jumpers to wrap around the modem control signals. But when the
meter cable alone was connected to the port, the lack of the feedback signals
CTS, DSR and DCD caused hupcl to hang the port. This didn't show up until
reboot.

Second, I needed to set “raw” mode on the serial port, the default as booted
parameters are set to “cooked” which translates returns to newlines. This
prevented the Expect script from seeing the \r at the end of the response.
These changes were also incorporated into the Expect script.

The Expect script, rddmm.exp, with the lines numbered for reference, is
included in the archive file along with a line-by-line explanation of the code.

Refinements

Both the temperature conversion circuit and the multimeter run from 9-volt
batteries. Since I wanted to take data for weeks at a time without worrying
about them going dead, I designed and built a couple of simple power supplies
using adjustable voltage regulators and the cube transformers that plug in the
wall, to act as battery eliminators. These also fit on a piece of vector board a
little over one square inch. (See Figure 4.)

Figure 4. Battery Eliminator Schematic

Visualizing the Data

The last part was visualizing the data. I used gnuplot to read the log file and
plot temperature versus time. I hadn't used gnuplot before, but a couple of
hours going through the man pages got me to a point where I could view the
plot on the Linux console or print it to my HP LaserJetIII.

Lines in /var/log/temps.log look like this:

Dec 31 10:45:01 server1 rddmm: 68.9 Degrees F

The operative gnuplot directives are:

set xdata time
set format x "%b %d\n%H:%M"
set title "Internal Server Temperature at Timekeeping Crystal"
set timefmt "%b %d %H:%M:%S"
set xrange ["Jan 03 14:00:00" : "Jan 04 07:59:00"]
set ylabel "Degrees F" -2
plot "/var/log/temps.log" using 1:6 with lines 1

The xdata and timefmt directives tell gnuplot the horizontal axis is measured in
time and how the times in the log file look. The xrange directive determines
which lines of the log file get plotted. The format x directive defines the labels
on the x axis; the \n between the date and time forces a two-line label. The plot
command tells gnuplot where to find the log file, which columns to plot and to
use line plot style 1. The set title and set ylabel put a title and y-axis label on the
plot.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f4.large.jpg

Figure 5. Temperature Versus Time

To print the plot to the laser jet, I used:

set terminal pcl5
set output '/root/plot.out'
replot

Then from the shell:

lpr /root/plot.out

In a similar fashion, I plotted the difference of system clock time measurements
versus the reference NTP server on the Internet with the gnuplot directives
shown here:

set xdata time
set timefmt "%Y-%m-%d %H:%M"
set xrange ["1999-01-03 15:00":"1999-01-04 07:00"]
set format x "%b %d\n%H:%M"
set title "Delta sysclock Minus Delta refclock"
set ylabel "Seconds" -2
plot "/root/clk_hr.prn" using 1:3 with lines 1

https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f6.large.jpg

Figure 6. System Clock time Measurements Versus Reference Ntp Server

The Envelope, Please

And now, after all of this, is the system clock being affected by temperature? By
looking at Figures 4 and 5, you can see that the variations in the clock
differences do not follow the temperature variations inside the server. As a
matter of fact, there is a large time variation that corrected itself, which I must
chalk up to variations in network latency. By taking time data once per hour
instead of once per day as I was originally doing, it became easier to identify
the random network variations, which had originally peaked my curiosity.

Summary

These techniques are also adaptable to measuring and recording other physical
parameters using devices with a serial interface. This particular digital
multimeter can measure DC and AC voltage and current, capacitance,
frequency and transistor gain. All these are accessible through the serial
interface.

Linux and a project like this have brought me back to the days when you could
actually create something useful with hardware and software. Sadly, most
things for computers today come out of a shrink-wrapped box. Linux provides
me with the tools I can use to make things happen in the real world.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3357s1.html

Acknowledgements

Denny Fox has been active with designing hardware, software and auto-test
equipment since the late '60s. When not hacking on something, Denny enjoys
hiking, sailing, reading and playing guitar. The president of Micro Time Inc., he
can be reached at dennyf@mninter.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3357s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Use of Linux in an Embedded System

Dave Pfaltzgraff

Issue #68, December 1999

One company's solution to a customer problem using Linux and open-source
software.

I work for a company that's involved in the design and manufacturing of
custom circuits. Historically, we have designed printed circuit boards and boxes
that are further integrated by our customers into their systems. Until recently
we were rarely involved in what is commonly called systems design and
integration. However, times are changing and as we broaden our customer
base, we have adapted to meet these needs. Most of the time, we have been
able to meet the immediate requirements using DOS and in some cases
Windows. This year, we began using Windows 98 to be able to use some of the
newer video capabilities, and in one case, Linux stepped in to quickly solve a
network connectivity problem. This paper is a brief description of one project
that provided the opportunity to get more involved with Linux and the
capabilities of this new operating system.

Description of the Problem

Recently, a customer, who is involved in retail sales and has customarily done
their own systems integration, asked us to look at designing a Card Access
System to replace their existing system. There were two primary reasons for
this. One of these was cost. They felt that by designing a system to specifically
meet their requirements, the production cost would be lower than by asking
for customization of a product already on the market. The second reason was
much more important to them. They wanted to be able to extend this new
system and add interfaces into other parts of their overall store system. The
store system includes their point-of-sale (POS) controller and a link to a security
video system. These aspects of the system design will be discussed in more
detail later.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The basic requirements to be met were:

• Entry into an area was to be controlled through the use of a credit-card-
style key.

• If a user did not have their key it would be possible for them to enter the
number manually.

• Employees could be added or deleted either automatically through the
POS system or manually by the store manager.

• Access to an area was granted or denied based on the key and the type of
area in question.

• Configuration of the system could be changed easily on site.

• If any area was accessed without a valid key, an alarm was to be sounded.

• Alarms could be reset by a manager, or optionally, by any valid key.

• Alarm conditions would be sent to the security video system.
• Managers would be able to override the system and allow doors to be

propped open for extended periods of time.
• A must was the capability to query the system and examine activity based

on area, time and/or employee.

Although these requirements are fairly basic, three things stood out. The first
was they wanted the updates of the access database to occur from the POS
system. However, this was something that remained “in the future”. Because of
this, the second point was updates would need to be made locally which
required an intuitive interface. Finally, the design of the security video system
was being designed at the same time so the link to that would also be in the
future. Other than having so many points that would remain for in the future,
this was quite typical of many of the projects we've done. One other difference
was we were to deliver a complete system rather than just the parts.

Implementation

Because of the distributed nature of the store environment, the decision was
made to use an EIA RS-422 type of interface to distribute the system
throughout the store. The basic idea was to have several serial lines from the
central PC going out to multiple door-access modules on each serial line. Each
door-access module would control up to four readers (or doors), see Figure 1.
The choice of four readers was based on a typical proximity of doors and the
amount of wiring needed for the readers, the solenoids and alarms. Since we
had designed card readers and other data entry type of equipment in the past,
it was decided to implement the card reader as a wall-mounted panel with an
8051 type device controlling it. Any entry from either the keypad or from a card
swipe would be buffered and sent to the door-access module when polled. The
door-access module would later forward it on to the central PC when it was

polled. The design of the system allows up to ten door-access modules per
serial link or a maximum of 40 doors per serial link.

Figure 1.

When the project was started, the feeling was that we would use Windows
95/98 as the operating system. This was a natural considering that in addition
to the necessary communication it could provide database services through the
use of Microsoft Access and an intuitive user interface. However, as the
hardware design progressed, it became apparent the programming resources
would not be available within an acceptable time frame. When it came time to
allocate resources for this job, I was winding down from another job and was
asked about how I would approach the design of the user interface. Not being
very familiar with Windows programming but having some exposure to the
browser interface, I asked if it would be appropriate to switch to Linux and
provide the user interface through the use of Apache and an appropriate
browser. The design team immediately picked up on the idea and presented it
to the customer. When it was pointed out that this implementation would not
require the user to be present at the equipment, which is typically crammed
into a closet, the customer responded, “Neat.” When asked if they would have
objections to implementing it on Linux, their response was, “Cool.” With this, I
was on my way.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3555f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3555f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3555f1.large.jpg

Committing to the Open Source Paradigm

Several aspects of using Linux needed to be considered before actually
committing to this program. Many companies have been battling with these
issues as Linux has struggled to move into the mainstream. The most
important to us was whether or not the development resources would be
available to us. Having worked with the GNU utilities, namely gcc and gdb, on a
previous project, I felt developing the main program would present no
problem. The next issue was the support required to allow the database
interface to be provided through the user's browser. Again, a little research
showed not only was the support there, but also there were many choices. One
question that was asked of me was how we would handle the constant flux of
kernel development. It didn't take long to realize it was not necessary to
continually upgrade these systems just to stay up to date. All we needed was a
workable version that could be propagated through the whole product. Since
the source code is available, if the kernel were to develop in a direction
incompatible with our system, we would not be abandoned with an albatross.

Implementing the Serial Interface and the Control Program

It seems that programming for a serial line in any system is a challenge and
nothing comes easy. This was particularly true for this project as I had minimal
experience with the UNIX environment and had to handle up to eight serial
ports. Because of previous experience, the design team had already selected
the Digi International eight-port 422 card. My first task was to set it up to run
under Linux. I felt like I was groping around in the dark and looked for any kind
of confirmation that I was doing things right. I tired to use minicom with a loop-
back plug just to see if it worked. If it had, there'd be little mention of it here,
but it didn't, and I spent considerable time reviewing what I had done. Finally, I
called the Digi International support people. Of course, they had me try all the
usual, and I was willing to entertain them on the off chance that I had
overlooked something. To make a long story short, after several cycles of e-
mail, one of their second-line support people picked up on my plight. While
working with him, I certainly learned much about the inner workings of Linux,
and it was worth the time for that alone. Finally, we discovered the problem
was in the version of the driver I had; in fact, it had not been written to support
the 422 card. A simple change and it started working. This experience proved to
me that Linux is indeed a supported system.

Now that all the hardware was in place, it was my job to make it work. I was
rather puzzled as to how I would handle up to eight serial interfaces and so I
did some reading. This included the appropriate HOWTOs and any books I
could get. Fortunately one of them was Beginning Linux Programming by Neil
Matthew and Richard Stones, Wrox press, 1996. In it, they develop an excellent
example of the use of FIFOs to communicate between tasks. I took their

example and expanded it, so that each serial interface had its own task and all
communicated through FIFOs to the central controlling task. To see how the
various tasks relate, see Figure 2. This proved to be an excellent choice for two
reasons. The first is that the central controlling task could spawn a task for each
serial link. If only one was needed for an application, only one task was
spawned, etc. The second is that the serial task could perform all polling, error
checking and retransmission without involving the controlling task in any way.
This made the controlling task much simpler in that it dealt only with valid
messages that needed action.

Figure 2.

One of the problems I've had in the past with programming serial links is that,
unless you can master the interrupt mechanism, the system spends a large
amount of time spinning its wheels waiting for something to happen. In the
Linux system, I was able to use the select call to allow each task to go into the
idle state until something needed to be done. This happens while the
controlling task is waiting for a message to arrive from one of the readers. The
timeout feature of the select call was also used to trigger a background task. If
no messages arrived from any reader within ten seconds, a subtask would
perform background housekeeping. It also happens in the serial task. In this
case, the select is set to wake up on arrival of a message from either a reader
or the controlling task. Again, the timeout feature was used, but this time it
indicated that one of the door-access modules had failed to respond, which is
indicative of a hardware problem.

https://secure2.linuxjournal.com/ljarchive/LJ/068/3555f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3555f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3555f2.large.jpg

With these basics in place, the development of the rest of the program
progressed very rapidly. I want to point out that the multi-tasking power of
Linux and the capabilities of gdb came through during this phase. Since the
serial task was spawned by the controlling task, no screen was attached, and
thus, there was no way to print the usual diagnostic messages during the
development phase. One of the first things I did was to learn how to use
syslogd to report error conditions within these tasks. Secondly, I used the
capability of gdb to connect to an already running task and debug it.

Interface Between the Control Program and the Database

This was one area where we had just enough experience to be dangerous. We
knew it could be done and this was one potential hot spot. In evaluating various
database packages, we looked at the licensing terms and the availability of
support for embedded and web applications. It seemed as though many of the
databases available for Linux took care of the last two requirements. The
licensing aspect was more varied in that several of the better-known packages
provided for a single user or non-commercial use at no fee. Since we would be
installing this on many systems and for commercial purposes, licensing was an
issue we didn't want to overlook. When we pursued it, we found some of the
license fees were higher than the going rate for MS Access. That alone
eliminated some of the choices. We eventually settled on using PostgreSQL.
Besides the very liberal copyright, we were strongly influenced by the
availability of high-quality documentation. Having the opportunity to review the
manuals before even committing to downloading the code was enough to
reassure us this was a good path to follow.

Once the database was chosen, we had to get down to the details of
implementation. The first part was to define the schema. Having had some
experience with SQL previously, I found that psql was easily adapted. Knowing
that the schema was likely to change as the project evolved, I wrote a few
scripts to define all the tables and fill in default values. This took care of setting
up the database. The next step was to define the interface to the control
program. On the same premise that the database schema would change, I set
up the interface as a separate module with subroutines to read selected data
into working buffers. With the exception of the log table, all of the tables were
read only for this function. Thus, there is a subroutine to read a selected record
from each of the tables. The only other exception to this approach is that when
the system first came up, a way was needed to determine just how many doors
were implemented. This merely took a set of subroutines that would open the
table, return the next entry in the table on each call and then close the table.
This allowed the program to scan all possible entries to set up the
communications links and other structures. All the functionality I needed was

provided by the lilbpq library included with the distribution. It turned out to be
easier than I had first expected.

Interface Between the Database and the User Interface

This aspect of the project is a bit more complicated because of the number of
different packages involved. If you recall from the outset, the idea was to use
the web browser as the user interface. This meant we needed to provide a web
server on our end of the link. For anyone in Linux, the choice of Apache is a no-
brainer. However, we needed to link it up to our database in some way.
Because of the availability of Perl expertise, we chose to go that route. In order
to provide a complete package, we also needed to include other modules. For
the interface to the database, we added ApacheDBI, DBD for Postgres and the
Perl DBI package. To support all we needed in Apache, we added Digest, HTML-
Parser, MIME-Base64, URI, Apache-SSI, libnet, libwww-perl, and mod-perl. Quite
a conglomeration of packages, but when installed correctly, it all worked very
well.

The design of the user interface was broken into two primary sections. The first
was a set of routines that formats the data for display on the user's screen. The
second is a main routine that accepts input from the user and processes it.
Generally, that processing consists of updating the database and passing
control to an appropriate routine to display a new set of data for the user. On
top of all this, Javascript was used at the browser level to perform validity
checking before passing parameters back to the main routine. Because of the
amount of data being passed back and forth between the browser and the
system, we kept things fairly simple. The only graphic we used was an
identifying logo.

In general, the user is allowed to select a specific table from a top-level menu.
Once a table is selected, the user is allowed to list the current table, look up an
existing entry, modify an entry, and of course, add or delete entries. Since the
data in the various tables may be somewhat sensitive and the people defining a
door have different needs from those defining job codes, we added one other
table to the system. The security table has nothing to do with normal operation
of the system, but instead determines who may see what tables. It worked out
nicely and it also gave us a means of allowing only certain users to have access
to the system.

Conclusion

One of the primary questions to ask yourself at the end of the project is: Should
we have done it differently? Although there is a lot of pressure to follow the
Microsoft flow because people are familiar with that environment, I'd have to
answer “No.” The system as we installed it has met or exceeded all of the

customer's expectations. The facilities provided with the linux operating system
have allowed us to deliver a system that is reliable and is easily serviced and
upgraded. For example, cron is used in conjunction with the logrotate utility to
ensure that the log files don't fill up all disk space. Yet, at the same time, we can
easily review the last four weeks of data. In a similar vein, PostgreSQL provides
all of the database services that are required and, along with a quick script,
delete stale data. These together keep the system from getting bogged down
with bloated files. Other utilities come into play as well, the apcupsd daemon
monitors the ups and ensures an orderly shutdown if necessary. As a side
benefit, we also have a log of the power in the building. Using mgetty with pppd
allows dial-in for any servicing that may be required. So far, all updates to the
system have been handled through this path as the current network
connection between us and the site is very slow.

The choice of using apache to provide the GUI couldn't have been better. When
we started, the idea was to allow any browser on the network to gain access
and allow updates to occur from remote locations. As noted above, the
network connection is slow so this has not happened to any great extent. Also,
by coincidence, the initial site did not have any other local machines. To take
care of this situation, the X windows system was put into use and the Netscape
browser is used at the machine. A special login was defined that placed the
user into Netscape and on exiting X windows, the user is logged out. Security
has been retained and the user is none the wiser.

Another thing to ask is: Where might we be headed in the future? The first step
is provide a serial link to report activity to the external security system. A
second is to have updates to the system database be done from another
machine. Initial discussions centered around using a spare serial ports for
these functions. No problem! In getting this far, we have all the experience with
serial programming to know exactly what's needed for both tasks. Later
discussions have moved towards using a TCP/IP link for the update function.
Again, no problem with the networking environment provided by linux!

We have also been asked by the customer about setting up a central
monitoring facility with the intent of being able report hardware failures. With
the networking capabilities, both direct and dial-in, it was fairly simple to
propose a system where a central unit could poll all of the units in the field.
Alternatively, the field systems could call in and report their health. The system
could even be a hybrid of these two approaches! The customer has not yet
responded to this proposal, but it is not a big step to see that not only can all
systems be monitored, but all program updates could be handled through this
mechanism as well.

As you may see from my enthusiasm, I'm all for linux! The biggest barrier we've
had is that of the familiar environment that people have come to expect. My
expectations are that, given time, there will be a shift in the linux world and
there will be 'education' of the masses and it will become more natural to use
linux for projects of this type. In anticipation of this type of shift, the system
was recently ported over to Red Hat version 6.0. With some minor tweaking for
Apache and a recompilation of our code to use the new libraries, the transition
was fairly uneventful.

Dave Pfaltzgraff is a Staff Engineer and has been involved in embedded
systems design for over 20 years. He finds the openness of Linux to be a great
pleasure and enjoys sharing “war” stories. He may be reached at
dpfaltzg@patapsco.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Building a Firewall with IP Chains

Pedro Paulo Bueno

Issue #68, December 1999

A quick introduction to the program ipchains.

Today, one of the most important topics in the computation world is security.
How to improve security in a single or interconnected machine is sometimes
hard to understand and difficult to implement. In this article, I will discuss how
to implement a simple firewall on a Linux machine using IP chains.

History

IP chains could be new to users who upgraded their 2.0.36 kernels to the 2.2.x
series, but old to those who worked in the 2.1.x series. ipchains is a rewrite of
the well-known ipfwadm, which was a rewrite of BSD's ipfw, and was used to
build firewalls in 2.0.x kernels. The are many reasons for this rewrite but
perhaps the most important is ipfwadm couldn't allow protocols other than
TCP, UDP or ICMP and it didn't handle fragments.

What It Is

Linux IP firewall chaining software is a program that uses the kernel IP packet
filtering capability. A packet filter looks at the header of a packet and decides
the fate of the entire packet. It can decide to DENY the packet (discard the
packet as if it had never received it), ACCEPT (let the packet pass through), or
REJECT (like deny, but notify the source of the packet).

Why You Want It

When you build your firewall you are looking for control and security of your
network, and good firewall scripts are the key to this objective's success. If you
are constantly receiving a ping flood from a specific IP address, you can deny all
packets received from that IP, by creating a chain with this policy. ipchains is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

able to read the policies of the scripts and give instructions to the IP packet
filtering as to how to handle the incoming/outcoming packets.

Implementation

First, your kernel must be able to use IP chains. Look for the file /proc/net/
ip_fwchains, if it exists, everything is okay. If not, you need to recompile your
kernel and set these options:

CONFIG_FIREWALL=y
CONFIG_IP_FIREWALL=y

Next you need to know the syntax of ipchains necessary to create functional
scripts. Let's imagine a hypothetical file called scriptf with some rules :

ipchains -N ippolicy
ipchains -I input -j ippolicy
ipchains -A ippolicy -p icmp -s 198.162.1.2 -j\
 DENY
ipchains -A ippolicy -p TCP -t 200.241.233.1
-j\
 DENY

This script will DENY every packet with the ICMP protocol from the specific
source addresses (in our example: 192.168.1.2) and also DENY every packet
with the TCP protocol where the target is the choosen address (again in our
example: 200.241.233.1). Here's a step-by-step explanation:

• ipchains -N ippolicy: this line creates a new chain with the name ippolicy.
• ipchains -I input -j ippolicy: this line says all packets will be verified by

ippolicy rules.
• ipchains -A ippolicy -p icmp -s 198.162.1.2 -j DENY: this line appends the

rule ippolicy to the ICMP protocol packets, with a source address of
192.162.1.2 and denies them. Options are:

• -A: append one or more rules to the selected chain.
• -p: specify the protocol.
• -s: specify the source address (0/0 means all addresses).
• -j: specify the target of the rule, i.e., what to do if the packet matches it.
• ipchains -A ippolicy -p TCP -t 200.241.233.1 -j DENY: This line will append

the rule ippolicy to the TCP protocol packets with a target address of
200.241.233.1 and denies them.

Now, you will want to inform the system that these rules are to be initialized at
boot time. Remembering all information about system initialization is in the /
etc/rc.d/init.d directory, copy the scriptf file to this directory and add a line like:

/etc/rc.d/init.d/scritpf

in the file /etc/rc.d/rc.sysinit to start it. An important option that could help you
in the future is the -F flag, which is used when you want to create new rules and
override all previous rules, that is:

ipchains -F ippolicy

Final Considerations

Ip chains is a very powerful tool that allows you to create many complex rules
in order to protect your network. Just for fun, I built a small C program to build
simple firewall scripts and simplify the rc.d process. It is open source and
available at linuxgo.persogo.com.br/ipchains.html. Good places to get more
information on how to build great scripts are the HOWTOs (see Resources).
Read them before you start to build your own firewall scripts.

Resources

Pedro Paulo Ferreira Bueno, Science Computer Student from Catholic
University of Goias (UCG- Brazil), is the manager of LinuxGO, the Goias Linux
User Group and the network card moderator at Linux Knowledge base. He is a
maniac linux user since he started with Linux in Kernel 2.0.7 . When he is not in
front of his linux machine he is probability playing soccer. He can be reached at
pedro.bueno@persogo.com.br.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://linuxgo.persogo.com.br/ipchains.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/3622s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Porting Progress Applications to Linux

Thomas Barringer

Issue #68, December 1999

An explanation of the work required to take an existing Progress application
and deploy it on Linux, and the advantages and disadvantages of doing so.

Progress Software recently announced that by the time you read this article,
the Progress RDBMS will be available in a native Linux port. Why is this good
news? Because it immediately makes thousands of new applications available
on our favorite operating system.

Over 5,000 applications have been written in Progress by Independent
Software Vendors (ISVs). All of these applications could potentially use Linux as
a back-end server, and many, if not most, provide a character interface which
would allow Linux to serve as a client as well.

The Progress Environment

If you are not familiar with it, Progress is an enterprise-level relational database
and 4GL development environment which has been running on UNIX systems
for 15 years. It supports a wide variety of operating systems, including servers
for NT, AIX, HP/UX, Solaris, Compaq Tru64 UNIX and many other popular
platforms. It also supports character clients on UNIX plus character or graphical
MS-Windows clients.

Version 8.3 of the database engine, the first version to be ported, can store half
a terabyte of data in a database. (Of course, if that's not enough, you can
connect to a couple of hundred databases simultaneously.) Also, each database
can handle up to 4,000 simultaneous user connections. Version 9, which will be
ported shortly after 8.3, supports 1000 times the data and up to 10,000 users.

One of the nice things about Progress, in my opinion, is that it also scales down.
If you want to run single-user on a low-end 486, you can. Database size can go
down to less than a megabyte. Running a single-user session, or serving a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

handful of users on a small application remotely, can fit nicely in a 16MB Linux
machine. Try running Oracle on NT and see what kind of power you need to get
the same job done.

Deployment Architecture

Where does Linux fit into a Progress deployment? In order to answer that, you
need to know something about Progress' architecture.

Databases can be accessed in either single-user or multi-user mode. Single-
user sessions give a single client process complete control of a database. Multi-
user Progress sessions consist of three different types of processes: clients,
servers and a broker process which manages database connections.
Deployment architectures can be chosen to support a wide variety of business
needs and available machinery.

A broker process runs on the machine containing the database. The broker
manages client connection requests and allocates a shared memory area which
is used by all the processes connecting to the database.

The client process is the one the user sees; it presents information to and
accepts input from the terminal. A client may also run as a background process,
in which case it is not associated with a terminal but is architecturally identical
to a foreground client. Clients are of two types: self-service and remote. A self-
service client runs on the same machine as the broker and the database, and
handles its own database manipulation requests. A remote client uses the TCP/
IP networking layer rather than connecting directly to the shared-memory area
created by the broker. This allows the remote client to be on a different
machine than the database. The broker spawns server processes to respond to
remote client requests. Each server process can handle many simultaneous
client connections. The remote client sends data retrieval and update requests
to the server; the server executes the requests as though it were itself a self-
service client, and sends the results back to the remote client.

This design easily allows separation of database and clients. Not only that, the
communications between them are standard so you can mix and match
operating systems. If you are currently running Windows clients against an NT
server, you can move the database to Linux and the Windows clients will
operate unchanged.

New Deployment Options

This flexibility allows Linux to fill several different roles in a Progress
deployment. Granted, the ability to replace the back-end server machine with
Linux is a real boon in several ways, which any Linux fan will be able to tell you:

the smaller footprint, the difference in cost and the reliability of this operating
system are already well-known. Also, remote maintenance comes free with
Linux; you must otherwise buy not only the expensive OS license, but network-
hogging third-party remote control software as well.

Figure 1. Linux can offload client work from an overburdened server.

Turn the situation around, and say you've already got a high-end UNIX server
that 300 users telnet into in order to run their character-based application. If
that single machine is struggling under the load of the database server plus
running all the client processes, it is now easy to offload half the work, plus a
fair proportion of the memory usage and disk I/O, by adding a few Linux
servers to handle remote clients. Users no longer log in to your main UNIX
machine; they log in to the Linux servers and use them as remote clients.
Figure 1 is a diagram of this arrangement. Let's discuss four benefits of this
arrangement.

One, the load on the database server is reduced. The memory consumed by
running (say) ten clients on the machine is freed in exchange for one server
process, which is about the same size as a single client. The number of clients a
server process can support will vary based on the demands of the application.
Server processes can typically serve the requests of anywhere from five to 20
remote clients simultaneously. Additional server processes are started
automatically by the broker, based on the number of new connection requests
from clients and on broker parameter settings. The CPU cycles which previously
went to client calculations, screen manipulation and other front-end tasks are
freed completely and moved to the new Linux machines. Any client-side disk I/

https://secure2.linuxjournal.com/ljarchive/LJ/068/3671f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3671f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/068/3671f1.large.jpg

O, used for temporary storage, record sorting and application printing or other
output, is also removed from the server. Using Linux can therefore boost the
available power of your expensive high-end server machine.

Two, security levels are increased because the users no longer need to have a
login on your main server. Instead, they now use TELNET to log in to one of the
Linux machines that contain no critical data.

Three, if all the Linux machines are configured more or less identically, which
would make sense from an administrative standpoint as well, you increase the
fault tolerance of your architecture. If one of the Linux machines needs to come
out of service for some reason, those who were previously using that machine
for their clients can immediately log in to one of the other Linux machines and
continue their work.

Four, the machines running Linux need fewer configurations than you might
think. Given a generous four or five megabytes of memory per client and very
little disk space, a dozen or more well-behaved interactive clients should be
able to run on a single mid-range processor. This small footprint, along with the
price of PCs today, means that these client services can be purchased for well
under a hundred dollars a seat. Compare that price with adding a second high-
end server to perform the same function.

The networking bandwidth required between the Linux machines and the
database server will vary based on your application. You might choose either to
put the Linux machines close to the database server or to distribute them to
your field offices, depending on the application demands and the available
infrastructure.

Linux may have a place at several levels of your deployment and can in fact be
phased in as needed, or used only where it is convenient.

Porting Existing Applications

Since the front end (application) and the back end (the database) are so
independent, let's examine what needs to be done one step at a time.

To move an existing Progress character-based application, the good news is all
it takes is a recompile. That's it! In fact, there are some instances in which you
don't even have to recompile; if you are staying within the same machine class,
the same r-code (compiled code) can just be copied from one machine to
another and it will run. This is because Progress r-code is not truly compiled
code, but rather an interpreted binary format. As long as you remain within the
same machine class (defined as machines with the same byte alignment,
endianness, and word size), your compiled code will not even need a recompile.

The only time any complications in this process will occur is when you have OS-
specific code within your application. Progress code doesn't care what OS it
runs on, but if you make a call to an external routine (such as ps with flags
specific to your old OS), you will need to make those modifications. However,
this situation is fairly rare. Common operating system functions (such as file
copy and delete) can be handled generically within Progress by using
statements like OS-COPY which work regardless of the underlying platform.

In some circumstances, porting an existing database is just as easy. Officially,
Progress does not support copying a database between operating systems or
machine architectures. In order to do this, you must do a dump and load. This
is a process of extracting the structure and all the data from the database in an
ASCII form, then copying the ASCII data to the new machine and loading it into
the new database. However, there is an unsupported loophole which I take
advantage of regularly. Currently, I dual-boot my laptop with NT and Linux, and
I have a Progress database on an NT FAT drive which is visible when I boot
Linux. This database is accessible from either OS. I have application code
(uncompiled because that is more convenient for me, but I could also share a
compiled version) which accesses this database no matter which choice I make
at boot time. There can't be much better proof than that. The true technical
limitations on copying databases are much the same as those for copying
compiled code: if the machine architecture and the word size are the same, you
should be okay.

If your situation does require a dump and load, and you want the time your
application is unavailable to be as short as possible, there are some techniques
which will dramatically reduce the down time of your database. I regularly
travel to customer sites and have seen some extreme examples of this: one
database, with a size measurable in tens of gigabytes, was unavailable for only
45 minutes and only in the final phase of their dump and load.

This sort of performance, however, requires some custom work in advance.
Generally, it involves dumping and loading stable data ahead of the actual
cutover point; the greatest time savings occurs when you can define stable data
most broadly. For example, if you have modification dates on a table, the entire
table can be dumped and loaded in advance; then, when you are ready to cut
over to the new system, re-dump only those records modified since the first
dump.

A Good Match

Porting an existing character application written in Progress is remarkably
simple. With over 5000 applications already written, the arrival of Progress on
the Linux scene should make a large dent in the “Linux has no application”
argument. Progress is flexible enough in its deployment capabilities that it

allows Linux to be integrated into existing deployments transparently to
provide greater scalability and cost-effectiveness.

Tom Barringer is a Senior Consultant with Progress Software. He is most
commonly found in airport lounges or in front of classrooms. What he does in
his spare time is yet to be determined because he rarely has any. However,
thanks to the wonders of modern technology, he can usually be reached at
tomb@progress.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/068/toc068.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Focus
	Features
	Forum
	Reviews
	Columns
	Departments
	Strictly On-Line
	Focus: System Administration
	Marjorie Richardson
	Awards
	1999 Editors' Choice Awards
	Workings of a Virtual Private Network, Part
1
	Post-Installation Security Procedures
	Security Name Servers on UNIX
	Corporate Linux: Coexisting with the Big
Boys

	Workings of a Virtual Private Network, Part 1
	David Morgan
	Virtual Private Networks
	The Network—PPPD and ROUTE
	The Private—SSH
	Public/Two-Key Cryptography
	SSH Authentication
	ssh Encryption
	Blending the Ingredients
	The Virtual

	Corporate Linux: Coexisting with the Big Boys
	Markolf Gudjons
	The Information Source: Enabling NIS
	The Net: Enabling NFS
	Login Scripts: A Uniform Approach
	Slipping into the Establishment
	Conclusion

	Post-Installation Security Procedures
	Eddie Harari
	The Kernel
	Disabling Processes
	Networking Applications
	Internet Servers
	POP, IMAP and Others
	Sendmail
	Conclusions

	Securing Name Servers on UNIX
	Nalneesh Gaur
	BIND Versions
	BIND Vulnerabilities and Issues
	Cache Poisoning
	Inverse-Query Buffer Overrun
	Denial of Service
	Zone Transfers
	Unauthorized Dynamic Updates
	Allowing Recursive Queries
	Securing DNS
	Use Most Current Version of BIND
	Restrict Zone Transfers
	Establish Access Control on Queries
	Restrict Recursive Queries
	Restrict Dynamic Updates
	Prevent IP Spoofing
	Architectural and Other Considerations
	Split-Brain Name Server
	Name Servers with Defined Roles
	Remove Unnecessary Information in
Database
	Run BIND as a Non-Root User
	Conclusion

	1999 Editors' Choice Awards
	Jason Kroll
	Marjorie Richardson
	Doc Searls
	Peter Salus

	X-ISP
	Ibrahim Haddad
	User Interface
	X-ISP Advantages
	X-ISP Requirements and Installation
	Documentation
	Final Word

	MultiFax
	Marcel Gagné
	Hardware! I Must Have More Hardware!
	Nuts and Bolts—mgetty+sendfax
	Setting Up sendfax
	The Windows Side of the Picture
	Installing MultiFax
	Now, the Web Stuff
	Dealing with Incoming Faxes
	Broadcast Faxing
	Documentation? There's Documentation
	The Big Wrap-up

	Hell's Kitchen Systems, Inc.
	Craig Knudsen
	The Linux Connection

	Guido van Rossum
	Phil Hughes

	Free Clues from Eric
	Doc Searls

	Product Review: Diffpack
	Jim Moore
	Diffpack
	Platforms
	Installation
	The Good
	The Bad
	Usage

	Castlewood ORB
	Patrick Lambert
	Device Information
	Hardware
	Included Software
	Windows Installation
	The Good
	The Bad
	Linux Installation
	Performance
	Conclusion

	MailStudio 2000
	Jason Kroll
	The User Interface
	The Good
	The Bad
	The Administrator Interface
	Technical Features
	Security
	MailStudio of the Future

	Developing Linux Applications with GTK+ and GDK
	Michael Hammel

	lpd: Getting the Hard Copy
	Michael Hughes
	Setting it Up
	Sharing Your Printers
	Wrapping Up

	Implementing Linux System Calls
	Jorge Manjarrez-Sanchez
	What is a System Call?
	Implementation of System Calls
	The Serial Port
	The Serial Port Syscall
	Adding a Makefile
	Testing the New Syscall

	A Web-Based Clipping Service
	Reuven M. Lerner
	Downloading Files
	Sorting Through the Output
	Using download-matching.pl
	Conclusion

	Effectively Utilizing 3DNow! in Linux
	Jonathan Bush
	Timothy S. Newman
	What is 3DNow!?
	Getting Started
	Using 3DNow in Gradient Computation
	Understanding Gradient Calculation Using
3DNow!
	3DNow! Optimizations
	Gradient Calculation Performance
	Conclusion

	Focus on Software
	David A. Bandel

	Letters to the Editor
	Various
	Practical Linux
	Product Support
	The Revolution Continues
	Is KDE the Answer?
	Stability

	More Letters
	Re: gcc performance on NT
	Comments on November 1999 issue
	Reply to your post
	hurray non-hatemail!
	Floppy Formatting
	Correction (?)
	Word Perfect 8 for Linux is unusable
	I would greatly appreciate your advice. (fwd)
	Correction to “Chosing the Right Commands” in the Oct Linux Journal
	Pictured
	Is KDE the Answer?
	Floppy formatting
	Is KDE the answer?
	About “Is KDE the Answer?”
	Learning Python review in last LJ
	Is KDE the Answer?
	Linux after CP/M
	Letter to the Editors
	Article Idea
	Please Read: suggestions for LJ
	Comment on “Microsoft Lamblast Linux”
	Hurt by Linus interview (Nov 99)
	Complaint Department

	UpFRONT
	Doc Searls
	LJ Index - December, 1999
	Sources
	Deplugging the Net
	Whoa, Nettie!
	Overheard
	jbum rocks
	GAMES FOCUS—Weiqi Baduk Igo Go
	STUPID PROGRAMMING
TRICKS→SCROLLTEXTS
	VENDOR NEWS
	STRICTLY ON-LINE
	COSOURCE ANNOUNCES COMPLETION OF FIRST
PROJECT
	Lineo Proposes Embedded Linux Advisory
Board

	Millennial Musings—Y2K
	Peter Salus
	So what?
	What About Computers?
	And the Internet?

	Tale of Two Markets
	Doc Searls

	Best of Technical Support
	Various
	Partitioning
	Networking Oddities
	PPP Locked by Process
	RPMs, Downloading
	Ejecting a CD-ROM
	Boot Process Question

	New Products
	Ellen Dahl
	DupliDisk RAIDcase
	REALTIME Product Suite
	Aplio/PRO
	OpenLinux 2.3
	Clustor 2.0
	V2.0 GNUPro Dev Kit for Linux
	FortranPlus Explorer
	ICEbox DS 2000, TA 2000 and NAS 1000
	LightningFAX v6.5.1
	OmniServer version 1.0
	PCI-based S514 Card
	PostShop, ScanShop, OCR Shop 4.5
	Xess
	Instant Extranet Server (IXS)

	Army National Guard Using Linux
	Richard Ridgeway

	Transparent Firewalling
	Federico
	Christian Pellegrin
	Requirements and Assumptions
	Network Configuration

	Customizing the XDM Login Screen
	Brian Lane
	Setting Up XDM
	Customizing XDM
	Changing the Background Color
	Changing the Background Pattern
	Displaying a Background Image
	Displaying Random Images
	Customizing the Login Box
	Move and Resize the xlogin Box
	Changing the xlogin Fonts
	Changing the xlogin Prompts
	Add a Clock to Your XDM Screen

	Kerberos
	Cosimo Leipold
	Here Comes Disaster
	Two Files: /etc/krb5.conf and kdc.conf
	More Fun with Commands
	Moment of Truth
	How Nice, But ...
	Tie Some Loose Ends
	Now What?

	What Can you Expect? —A Data Collection Project Using Linux
	Denny Fox
	The Idea
	Gathering the Hardware Tools
	Gathering the Software Tools
	The First Try
	Creating the Missing Tools
	Working Around the Gotchas
	Refinements
	Visualizing the Data
	The Envelope, Please
	Summary

	The Use of Linux in an Embedded System
	Dave Pfaltzgraff
	Description of the Problem
	Implementation
	Committing to the Open Source Paradigm
	Implementing the Serial Interface and the
Control Program
	Interface Between the Control Program and the
Database
	Interface Between the Database and the User
Interface
	Conclusion

	Building a Firewall with IP Chains
	Pedro Paulo Bueno
	History
	What It Is
	Why You Want It
	Implementation
	Final Considerations

	Porting Progress Applications to Linux
	Thomas Barringer
	The Progress Environment
	Deployment Architecture
	New Deployment Options
	Porting Existing Applications
	A Good Match

